Advertisement

A New Paradigm for Shortest Link Scheduling in Wireless Networks: Theory and Applications

  • Fahad Al-dhelaan
  • Peng-Jun WanEmail author
  • Huaqiang Yuan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9798)

Abstract

Shortest link scheduling (SLS) is one of the most fundamental problems in wireless networks. Almost all of the state-of-the-art approximation algorithms for SLS in wireless networks are resorted to the ellipsoid method for linear programming exclusively. However, the ellipsoid method can require an inordinate amount of running time and memory even for a moderate sized input, and consequently is often unusable in practice. This paper presents a completely new paradigm for SLS in general wireless networks which is radically different from the prevailing ellipsoid method, and is much faster and simpler. The broarder applicability of this new paradigm is demonstrated by its applications to SLS in wireless single-channel single-radio networks under the physical interference model, wireless multi-channel multi-radio networks under the protocol interference model, and wireless multi-input multi-output networks with receiver-side interference suppression under the protocol interference model.

Keywords

Link scheduling Wireless interference Approximation algorithm 

Notes

Acknowledgements

This work was supported in part by the National Science Foundation of USA under grants CNS-1219109 and CNS-1454770, and by the National Natural Science Foundation of P. R. China under grants 61529202, 61170216, and 61572131.

References

  1. 1.
    Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and application. Theor. Comput. 8(1), 121–164 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: Gambling in a rigged casino: the adversarial multi-armed bandit problem. In: Proceedings of IEEE FOCS, pp. 322–331 (1995)Google Scholar
  3. 3.
    Cesa-Bianchi, N., Freund, Y., Helmbold, D., Haussler, D., Schapire, R., Warmuth, M.: How to use expert advice. J. Assoc. Comput. Mach. 44(3), 427–485 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chafekar, D., Kumar, V., Marathe, M., Parthasarathy, S., Srinivasan, A.: Approximation algorithms for computing capacity of wireless networks with SINR constraints. In: IEEE INFOCOM, pp. 1166–1174 (2008)Google Scholar
  5. 5.
    Freund, Y., Schapire, R.: A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Freund, Y., Schapire, R.: Adaptive game playing using multiplicative weights. Games Econ. Behav. 29, 79–103 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Han, B., Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Distributed strategies for channel allocation and scheduling in software-defined radio networks. In: Proceedings of the IEEE INFOCOM, pp. 1521–1529 (2009)Google Scholar
  8. 8.
    Jansen, K., Porkolab, L.: On preemptive resource constrained scheduling: polynomial-time approximation schemes. SIAM J. Discrete Math. 20(3), 545–563 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Khandekar, R.: Lagrangian relaxation based algorithms for convex programming problems, Ph.D. thesis, Indian Institute of Technology, Delhi (2004)Google Scholar
  10. 10.
    Kodialam, M., Nandagopal, T.: Characterizing achievable ratesin multi-hop wireless networks: the joint routing and scheduling problem. In: Proceedings of the ACM MobiCom (2003)Google Scholar
  11. 11.
    Kodialam, M., Nandagopal, T.: Characterizing the capacity region in multi-radio multi-channel wireless mesh networks. In: Proceedings of the ACM MobiCom (2005)Google Scholar
  12. 12.
    Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Algorithmic aspects of capacity in wireless networks. SIGMETRICS Perform. Eval. Rev. 33(1), 133–144 (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Hou, Y.T., Shi, Y., Sherali, H.: Cross-layer optimization for MIMO-based wireless ad hoc networks: routing. IEEE J. Sel. Areas Commun. Power Allocation Bandwidth allocation 6, 913–926 (2008)Google Scholar
  14. 14.
    Ma, C., Al-dhelaan, F., Wan, P.-J.: Maximum independent set of links with a monotone and sublinear power assignment. In: Ren, K., Liu, X., Liang, W., Xu, M., Jia, X., Xing, K. (eds.) WASA 2013. LNCS, vol. 7992, pp. 64–75. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Ma, C., Al-dhelaan, F., Wan, P.-J.: Maximum independent set of links with power control. In: Ren, K., Liu, X., Liang, W., Xu, M., Jia, X., Xing, K. (eds.) WASA 2013. LNCS, vol. 7992, pp. 474–485. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Schrijver, A.: Combinatorial Optimization. Algorithms and Combinatorics., vol. 24. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  17. 17.
    V. Vovk. A game of prediction with expert advice. In: Proceedings of the 8th Annual Conference on Computational Learning Theory, pp. 51–60 (1995)Google Scholar
  18. 18.
    Wan, P.-J.: Multiflows in Multihop Wireless Networks, In: ACM MOBIHOC, pp. 85–94 (2009)Google Scholar
  19. 19.
    Wan, P.-J., Chen, D., Dai, G., Wang, Z., Yao, F.: Maximizing capacity with power control under physical interference model in duplex mode. In: IEEE INFOCOM, pp. 415–423 (2012)Google Scholar
  20. 20.
    Wan, P.-J., Cheng, Y., Wang, Z., Yao, F.: Multiflows in multi-channel multi-radio multihop wireless networks. In: IEEE INFOCOM, pp. 846–854 (2011)Google Scholar
  21. 21.
    Wan, P.-J., Frieder, O., Jia, X., Yao, F., Xu, X.-H., Tang, S.-J.: Wireless link scheduling under physical interference model. In: IEEE INFOCOM, pp. 838–845 (2011)Google Scholar
  22. 22.
    Wan, P.-J., Jia, X., Dai, G., Du, H., Wan, Z.G., Frieder, O.: Scalable algorithms for wireless link schedulings in multi-channel multi-radio wireless networks. In: IEEE INFOCOM, pp. 2121–2129 (2013)Google Scholar
  23. 23.
    Wan, P.-J., Jia, X., Dai, G., Du, H., Frieder, O.: Fast and simple approximation algorithms for maximum weighted independent set of links. In: IEEE INFOCOM, pp. 1653–1661 (2014)Google Scholar
  24. 24.
    Wan, P.-J., Wang, L., Ma, C., Wang, Z., Xu, B., Li, M.: Maximizing wireless network capacity with linear power: breaking the logarithmic barrier. In: IEEE INFOCOM, pp. 135–139 (2013)Google Scholar
  25. 25.
    Wan, P.-J., Xu, B., Frieder, O., Ji, S., Wang, B., Xu, X.: Capacity maximization in wireless MIMO networks with receiver-side interference suppression. In: ACM MOBIHOC, pp. 145–154 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fahad Al-dhelaan
    • 1
  • Peng-Jun Wan
    • 1
    • 2
    Email author
  • Huaqiang Yuan
    • 2
  1. 1.Illinois Institute of TechnologyChicagoUSA
  2. 2.Dongguan University of TechnologyDongguanPeople’s Republic of China

Personalised recommendations