Skip to main content

Advanced Architectures for PON Supporting Fi-Wi Convergence

  • Chapter
  • First Online:
Fiber-Wireless Convergence in Next-Generation Communication Networks

Part of the book series: Optical Networks ((OPNW))

Abstract

The phenomenal growth of mobile backhaul capacity required to support the emerging mobile traffic including cellular Long-Term Evolution (LTE), and LTE-Advanced (LTE-A) requires rapid migration from today’s legacy circuit-switched T1/E1 wireline and microwave backhaul technologies to a new fiber-supported, all-packet-based mobile backhaul infrastructure. Mobile backhaul is utilized to backhaul traffic from individual base stations (BSs) to the radio network controller (RNC), which then connects to the mobile operator’s core network or gateway. Many carriers around the world are considering the potential of utilizing the fiber-based passive optical network (PON) access infrastructure as an all-packet-based converged fixed-mobile optical access networking transport architecture to backhaul both mobile and typical wireline traffic. This chapter details the case for backhauling wireless traffic utilizing an optical access network, the various standards and technology options for passive optical networks (PONs), as well as the design of a novel, fully distributed, ring-based WDM-PON architecture that could be utilized for the support of a converged next-generation mobile infrastructure. Further, as in 4G and 5G the radio access network (RAN) becomes a broad concept that describes network transport systems including mobile backhaul, mobile fronthaul, and wireless connections between radio equipment and user devices, a fiber-wireless integrated system is nowadays not only limited to mobile backhaul, which is mainly composed of fixed wires, but also includes mobile fronthaul. Thus, a discussion is also added at the end of this chapter on mobile fronthaul utilizing PON infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahlman E, Parkvall S, Skold J, Beming P (2008) 3G evolution: HSPA and LTE for mobile broadband, 2nd edn. Academic Press

    Google Scholar 

  2. Ali M, Ellinas G, Erkan H, Hadjiantonis A, Dorsinville R (2010) On the vision of complete fixed-mobile convergence. IEEE/OSA J Lightwave Technol 28(16):2343–2357

    Article  Google Scholar 

  3. Ranaweera C, Wong E, Lim C, Nirmalathas A (2012) Next generation optical-wireless converged network architectures. IEEE Network 26(2):22–27

    Article  Google Scholar 

  4. Kramer G (2005) Ethernet passive optical networks. McGraw-Hill

    Google Scholar 

  5. Kramer G, Pesavento G (2002) Ethernet passive optical network (EPON): building a next generation optical access network. IEEE Commun Mag 40(2):66–73

    Article  Google Scholar 

  6. Shumate PW (2008) Fiber-to-the-home: 1997–2007. IEEE/OSA J Lightwave Technol 26(9):1093–1103

    Article  Google Scholar 

  7. Lee C-H, Sorin WV, Kim BY (2006) Fiber to the home using a PON infrastructure. IEEE/OSA J Lightwave Technol 24(12):4568–4583

    Article  Google Scholar 

  8. Kazovsky LG, Shaw W-T, Gutierrez D, Cheng N, Wong S-W (2007) Next-generation optical access networks. IEEE/OSA J Lightwave Technol 25(11):3428–3442

    Article  Google Scholar 

  9. Effenberger F, Cleary D, Haran O, Kramer G, Li RD, Oron M, Pfeiffer T (2007) An introduction to PON technologies. IEEE Commun Mag 45(3):S17–S25

    Article  Google Scholar 

  10. Effenberger F, El-Bawab T (2009) Passive optical networks (PONs): past, present, and future. Opt Switch Netw 6(3):143–150

    Article  Google Scholar 

  11. Skubic B, Chen J, Ahmed J, Wosinska L, Mukherjee B (2009) A comparison of dynamic bandwidth allocation for EPON, GPON, and next generation TDM PON. IEEE Commun Mag 47(3):S40–S48

    Article  Google Scholar 

  12. Roy R, Kramer G, Hajduczenia M, Silva H (2011) Performance of 10GEPON. IEEE Commun Mag 49(11):78–85

    Article  Google Scholar 

  13. Aurzada F, Scheutzow M, Reisslein M, Ghazisaidi N, Maier M (2011) Capacity and delay analysis of next-generation passive optical networks (NG-PONs). IEEE Trans Commun 59(5):1378–1388

    Article  Google Scholar 

  14. Kani J-I, Bourgart F, Cui A, Rafel A, Campbell M, Davey R, Rodrigues S (2009) Next-generation PON—part I: technology roadmap and general requirements. IEEE Commun Mag 47(11):43–49

    Article  Google Scholar 

  15. Rujian L (2008) Next generation PON in emerging networks. In: Proceedings IEEE/OSA optical fiber communication/national fiber optic engineers conference (OFC/NFOEC), pp 1–3

    Google Scholar 

  16. Tanaka K et al (2010) IEEE 802.3av 10G-EPON standardization and its research and development status. IEEE/OSA J Lightwave Technol 28:651–661

    Article  Google Scholar 

  17. Gutierrez L, Garfias P, De Andrade M, Cervello-Pastor C, Sallent S (2010) Next Generation Optical Access Networks: from TDM to WDM. In: Bouras CJ (ed) Trends in telecommunications technologies, InTech

    Google Scholar 

  18. Banerjee A et al (2005) Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review. OSA J Opt Netw 4(11):737–758

    Article  Google Scholar 

  19. Zhang J, Ansari N (2011) Scheduling hybrid WDM/TDM passive optical networks with nonzero laser tuning time. IEEE/ACM Trans Netw 19(4):1014–1027

    Article  Google Scholar 

  20. http://www.ict-sardana.eu

  21. www.ict-accordance.eu

  22. Maier M (2014) The escape of Sisyphus or what “Post NG-PON2” should do apart from never-ending capacity upgrades. Photonics 1(1):47–66

    Article  MathSciNet  Google Scholar 

  23. Leng L, Le T (2012) A Raman amplified GPON reach extension system using parameters of a deployed fiber. OSA Opt Express 20(24):26473–26479

    Article  Google Scholar 

  24. Song H, Mukherjee B, Park Y, Yang S (2006) Shared-wavelength WDM-PON access network for supporting downstream traffic with QoS. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), Anaheim, CA, March 2006

    Google Scholar 

  25. Song H, Park Y, Banerjee A, Mukherjee B (2010) Shared wavelength WDM-PON access network. In: Proceedings international conference on the optical internet (COIN), Jehu, Korea

    Google Scholar 

  26. An F-T, Kim KS, Gutierrez D, Yam S, Hu E, Shrikhande K, Kazovsky LG (2004) SUCCESS: a next-generation hybrid WDM/TDM optical access network architecture. IEEE/OSA J Lightwave Technol 22(11):2557–2569

    Article  Google Scholar 

  27. Maier M, Herzog M, Reisslein M (2007) STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs. IEEE Commun Mag 45(5):50–56

    Article  Google Scholar 

  28. McGarry M, Reisslein M, Maier M (2006) WDM ethernet passive optical networks. IEEE Commun Mag 44(2):15–22

    Article  Google Scholar 

  29. Dhaini A, Assi C, Maier M, Shami A (2007) Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks. IEEE/OSA J Lightwave Technol 25(1):277–286

    Article  Google Scholar 

  30. Hsueh Y-L, Rogge MS, Yamamoto S, Kazovsky LG (2005) A highly flexible and efficient passive optical network employing dynamic wavelength allocation. IEEE/OSA J Lightwave Technol 23(1):277–286

    Article  Google Scholar 

  31. Hossain ASM D, Dorsinville R, Hadjiantonis A, Ellinas G, Ali M (2007) A simple self-healing ring-based local access PON architecture for supporting private networking capability. In: Proceedings of IEEE global communications conference (GLOBECOM), Washington DC, November 2007

    Google Scholar 

  32. Erkan H, Hossain ASM D, Dorsinville R, Ali MA, Hadjiantonis A, Ellinas G, Khalil A (2008) A novel ring-based WDM-PON access architecture for the efficient utilization of network resources. In: Proceedings of IEEE ICC, pp 5175–5181

    Google Scholar 

  33. Erkan H, Ellinas G, Hadjiantonis A, Dorsinville R, Ali MA (2013) Dynamic and fair resource allocation in a distributed ring-based WDM-PON architectures. Comput Commun Spec Issue Progr Broadband Access Netw Opt-Wirel Converg 36(14):1559–1569

    Google Scholar 

  34. Sherif S, Hadjiantonis A, Ellinas G, Assi C, Ali MA (2004) A novel distributed Ethernet-based PON access architecture for provisioning differentiated QoS. IEEE/OSA J Lightwave Technol 22(11):2483–2497

    Article  Google Scholar 

  35. Delowar A, Dorsinville R, Ali MA, Shami A, Assi C (2006) Ring-based local access PON architecture for supporting private networking capability. OSA J Optical Netw 5(1):26–39

    Article  Google Scholar 

  36. Ramantas K, Vlachos K, Bikos AN, Ellinas G, Hadjiantonis A (2014) A new unified PON-RAN access architecture for 4G LTE networks. In: IEEE/OSA Journal of Optical Communications and Networks, vol 6, no 10, pp 890–900

    Google Scholar 

  37. Christodoulou C, Manousakis K, Ellinas G (2016) Optimization algorithm for downstream wavelength sharing and scheduling in Mobile Backhaul networks. In: Proceedings of IEEE 18th Mediterranean electrotechnical conference (Melecon), Limassol, Cyprus

    Google Scholar 

  38. Erkan H, Ellinas G, Hadjiantonis A, Dorsinville R, Ali MA (2010) Native ethernet-based self-healing WDM-PON local access ring architecture: a new direction for supporting simple and efficient resilience capabilities. In: Proceedings of IEEE international communications conference (ICC), Cape Town, South Africa, May 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ellinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ellinas, G., Vlachos, K., Christodoulou, C., Ali, M. (2017). Advanced Architectures for PON Supporting Fi-Wi Convergence. In: Tornatore, M., Chang, GK., Ellinas, G. (eds) Fiber-Wireless Convergence in Next-Generation Communication Networks. Optical Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-42822-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42822-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42820-8

  • Online ISBN: 978-3-319-42822-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics