Skip to main content

Shale Gas Process and Supply Chain Optimization

  • Chapter
  • First Online:
Advances in Energy Systems Engineering

Abstract

In recent decades, large-scale production of shale gas has been considered as a major issue in the U.S. energy industry. In accordance with its great economic potential and environmental concerns, shale gas process and supply chain optimization has become one of the most popular research areas. In this chapter, we provide a comprehensive overview of the supply chain management and process design problems in shale gas industry. We summarize four major research challenge areas, namely the design and planning of shale gas supply chain, water management in hydraulic fracturing, sustainability concerns in shale gas industry, and design and optimization in shale gas processing system. We further provide review and discussions of the major publications corresponding to each of the aforementioned topics. Potential opportunities in the shale gas system are presented as well to illuminate the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, H. R., Henderson, C., Matis, H., Kommepalli, H., & Wang, H. (2011). Cost effective recovery of low TDS frac flowback water for re-use. Niskayuna, NY 12309-1027: Department of Energy.

    Google Scholar 

  • Allen, D. T. (2014a). Methane emissions from natural gas production and use: Reconciling bottom-up and top-down measurements. Current Opinion in Chemical Engineering, 5, 78–83. doi:10.1016/j.coche.2014.05.004.

    Article  Google Scholar 

  • Allen, D. T. (2014b). Atmospheric emissions and air quality impacts from natural gas production and use. Annual Review of Chemical and Biomolecular Engineering, 5(1), 55–75. doi:10.1146/annurev-chembioeng-060713-035938.

    Article  Google Scholar 

  • Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., & Hamburg, S. P. (2012). Greater focus needed on methane leakage from natural gas infrastructure. Proceedings of the National Academy of Sciences, 109(17), 6435–6440. doi:10.1073/pnas.1202407109.

    Article  Google Scholar 

  • API. (2010). Water management associated with hydraulic fracturing. Institute AP.

    Google Scholar 

  • Brandt, A. R., Heath, G. A., Kort, E. A., O’Sullivan, F., Pétron, G., Jordaan, S. M., et al. (2014). Methane leaks from North American natural gas systems. Science, 343(6172), 733–735. doi:10.1126/science.1247045.

    Article  Google Scholar 

  • Burnham, A., Han, J., Clark, C. E., Wang, M., Dunn, J. B., & Palou-Rivera, I. (2011). Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environmental Science and Technology, 46(2), 619–627. doi:10.1021/es201942m.

    Article  Google Scholar 

  • Cafaro, D. C., & Grossmann, I. E. (2014). Strategic planning, design, and development of the shale gas supply chain network. AIChE Journal, 60(6), 21. doi:10.1002/aic.14405.

    Article  Google Scholar 

  • Chaudhri, M. M. (2012). Numerical modeling of multifracture horizontal well for uncertainty analysis and history matching: Case studies from Oklahoma and Texas shale gas wells.

    Google Scholar 

  • Chima, C. M. (2011). Supply-chain management issues in the oil and gas industry. Journal of Business & Economics Research (JBER), 5(6).

    Google Scholar 

  • Dale, A. T., Khanna, V., Vidic, R. D., & Bilec, M. M. (2013). Process based life-cycle assessment of natural gas from the Marcellus Shale. Environmental Science and Technology, 47(10), 5459–5466. doi:10.1021/es304414q.

    Article  Google Scholar 

  • DOE/NETL. (2011). Life cycle greenhouse gas inventory of natural gas extraction, delivery and electricity production.

    Google Scholar 

  • Drouven, M. G., & Grossmann, I. E. (2016). Multi-period planning, design and strategic models for long-term, quality-sensitive shale gas development. AIChE Journal. doi:10.1002/aic.15174.

    Google Scholar 

  • Duran, M., & Grossmann, I. (1986). A mixed-integer nonlinear programming algorithm for process systems synthesis. AIChE Journal, 32(4), 592–606.

    Article  Google Scholar 

  • Ehlinger, V. M., Gabriel, K. J., Noureldin, M. M. B., & El-Halwagi, M. M. (2014). Process design and integration of shale gas to methanol. ACS Sustainable Chemistry & Engineering, 2(1), 30–37. doi:10.1021/sc400185b.

    Article  Google Scholar 

  • EIA. (2011). Review of emerging resources: U.S. shale gas and shale oil plays. Washington, DC 20585: U.S. Energy Information Administration.

    Google Scholar 

  • EIA. (2015). Annual Energy Outlook 2015 with projections to 2040. U.S. Energy Information Administration, Washington, DC 20585.

    Google Scholar 

  • EIA Natural Gas Consumption by End Use. Retrieved June 16, 2015, from http://www.eia.gov/dnav/ng/ng_cons_sum_dcu_spa_a.htm.

  • EIA Underground Natural Gas Storage. Retrieved September 29, 2014, from http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/undrgrnd_storage.html.

  • EPA. (2011). Plan to study the potential impacts of hydraulic fracturing on drinking water resources. EPA, Washington, D.C.: Office of Research and Development U.S.

    Google Scholar 

  • Gao, J., & You, F. (2015a). Deciphering and handling uncertainty in shale gas supply chain design and optimization: Novel modeling framework and computationally efficient solution algorithm. AIChE Journal, 61(11), 3739–3755. doi:10.1002/aic.15032.

    Article  Google Scholar 

  • Gao, J., & You, F. (2015b). Optimal design and operations of supply chain networks for water management in shale gas production: MILFP model and algorithms for the water-energy nexus. AIChE Journal, 61(4), 1184–1208. doi:10.1002/aic.14705.

    Article  Google Scholar 

  • Gao, J., & You, F. (2015c). Shale gas supply chain design and operations toward better economic and life cycle environmental performance: MINLP model and global optimization algorithm. ACS Sustainable Chemistry & Engineering, 3(7), 1282–1291. doi:10.1021/acssuschemeng.5b00122.

    Article  Google Scholar 

  • Gaudlip, A.W., & Paugh, L. O. (2008). Marcellus Shale water management challenges in Pennsylvania. Paper presented at the shale gas Production Conference. Fort Worth, Texas, 16–18 November.

    Google Scholar 

  • Goldstein, B. D. (2014). The importance of public health agency independence: Marcellus shale gas drilling in Pennsylvania. American Journal of Public Health, 104(2), e13–e15. doi:10.2105/ajph.2013.301755.

    Article  Google Scholar 

  • Gracceva, F., & Zeniewski, P. (2013). Exploring the uncertainty around potential shale gas development—A global energy system analysis based on TIAM (TIMES Integrated Assessment Model). Energy, 57, 443–457. doi:10.1016/j.energy.2013.06.006.

    Article  Google Scholar 

  • Gregory, K. B., Vidic, R. D., & Dzombak, D. A. (2011). Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements, 7(3), 181–186. doi:10.2113/gselements.7.3.181.

    Article  Google Scholar 

  • Gupta, V., & Grossmann, I. E. (2012). An efficient multiperiod MINLP model for optimal planning of offshore oil and gas field infrastructure. Industrial and Engineering Chemistry Research, 51(19), 6823–6840. doi:10.1021/ie202959w.

    Article  Google Scholar 

  • Harding, N. R. (2008). Application of stochastic prospect analysis for shale gas reservoirs.

    Google Scholar 

  • Harto, C. (2013). Management of water from CCS: Life cycle water consumption for carbon capture and storage (trans: Energy USDo). Argonne National Laboratory.

    Google Scholar 

  • He, C., & You, F. (2014). Shale gas processing integrated with ethylene production: Novel process designs, exergy analysis, and techno-economic analysis. Industrial and Engineering Chemistry Research, 53(28), 11442–11459. doi:10.1021/ie5012245.

    Article  Google Scholar 

  • He, C., & You, F. (2015). Toward more cost-effective and greener chemicals production from shale gas by integrating with bioethanol dehydration: Novel process design and simulation-based optimization. AIChE Journal, 61(4), 1209–1232. doi:10.1002/aic.14713.

    Article  Google Scholar 

  • He, C., & You, F. (2016). Deciphering the true life cycle environmental impacts and costs of the mega-scale shale gas-to-olefins projects in the United States. Energy & Environmental Science, 9, 820–840. doi:10.1039/C5EE02365C.

  • Heath, G. A., O’Donoughue, P., Arent, D. J., & Bazilian, M. (2014). Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proceedings of the National Academy of Sciences, 111(31), E3167–E3176.

    Article  Google Scholar 

  • Horner, P., Halldorson, B., & Slutz, J. A. (2011). Shale gas water treatment value chain—A review of technologies including case studies. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

    Google Scholar 

  • Howarth, R. W. (2014). A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Science & Engineering, 2(2), 47–60. doi:10.1002/ese3.35.

    Article  Google Scholar 

  • Hughes, J. D. (2013). A reality check on the shale revolution. Nature, 494(7437), 307–308.

    Article  Google Scholar 

  • Hughes, J. D. (2014). Drilling deeper: A reality check on U.S. Government Forecasts for A Lasting Tight Oil & Shale Gas Boom. California, Santa Rosa 95404: Post Carbon Institute.

    Google Scholar 

  • Iyer, R. R., Grossmann, I. E., Vasantharajan, S., & Cullick, A. S. (1998). Optimal planning and scheduling of offshore oil field infrastructure investment and operations. Industrial and Engineering Chemistry Research, 37(4), 1380–1397. doi:10.1021/ie970532x.

    Article  Google Scholar 

  • Jayakumar, R., & Rai, R. R. (2012). Impact of uncertainty in estimation of shale gas reservoir and completion properties on EUR forecast and optimal development planning: A Marcellus case study.

    Google Scholar 

  • Jiang, M., Hendrickson, C. T., & VanBriesen, J. M. (2014). Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well. Environmental Science and Technology, 48(3), 1911–1920. doi:10.1021/es4047654.

    Article  Google Scholar 

  • Julián-Durán, L. M., Ortiz-Espinoza, A. P., El-Halwagi, M. M., & Jiménez-Gutiérrez, A. (2014). Techno-economic assessment and environmental impact of shale gas alternatives to methanol. ACS Sustainable Chemistry & Engineering, 2(10), 2338–2344. doi:10.1021/sc500330g.

    Article  Google Scholar 

  • Karapataki, C. (2012). Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale. Master thesis. Cambridge, MA 02139-4307: Massachusetts Institute of Technology.

    Google Scholar 

  • Knudsen, B. R., & Foss, B. (2013). Shut-in based production optimization of shale-gas systems. Computers & Chemical Engineering, 58, 54–67. doi:10.1016/j.compchemeng.2013.05.022.

    Article  Google Scholar 

  • Knudsen, B. R., Grossmann, I. E., Foss, B., & Conn, A. R. (2014a). Lagrangian relaxation based decomposition for well scheduling in shale-gas systems. Computers & Chemical Engineering, 63, 234–249. doi:10.1016/j.compchemeng.2014.02.005.

    Article  Google Scholar 

  • Knudsen, B. R., Whitson, C. H., & Foss, B. (2014b). Shale-gas scheduling for natural-gas supply in electric power production. Energy, 78, 165–182. doi:10.1016/j.energy.2014.09.076.

    Article  Google Scholar 

  • Laurenzi, I. J., & Jersey, G. R. (2013). Life cycle greenhouse gas emissions and freshwater consumption of Marcellus Shale gas. Environmental Science and Technology, 47(9), 4896–4903. doi:10.1021/es305162w.

    Article  Google Scholar 

  • Lira-Barragán, L. F., Ponce-Ortega, J. M., Guillén-Gosálbez, G., & El-Halwagi, M. M. (2016a). Optimal water management under uncertainty for shale gas production. Industrial and Engineering Chemistry Research, 55(5), 1322–1335. doi:10.1021/acs.iecr.5b02748.

    Article  Google Scholar 

  • Lira-Barragán, L. F., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2016). Optimal reuse of flowback wastewater in hydraulic fracturing including seasonal and environmental constraints. AIChE Journal n/a–n/a. doi:10.1002/aic.15167.

  • Martín, M., & Grossmann, I. E. (2013). Optimal use of hybrid feedstock, switchgrass and shale gas for the simultaneous production of hydrogen and liquid fuels. Energy, 55, 378–391. doi:10.1016/j.energy.2013.04.005.

    Article  Google Scholar 

  • Mauter, M., & Palmer, V. (2014). Expert elicitation of trends in Marcellus oil and gas wastewater management. Journal of Environmental Engineering, 140(5), B4014004. doi:10.1061/(ASCE)EE.1943-7870.0000811.

    Article  Google Scholar 

  • Mauter, M. S., Palmer, V. R., Tang, Y., & Behrer, A. P. (2013). The next frontier in United States shale gas and tight oil extraction: Strategic reduction of environmental impacts. Belfer Center for Science and International Affairs Discussion Paper Series.

    Google Scholar 

  • Mauter, M. S., Alvarez, P. J. J., Burton, A., Cafaro, D. C., Chen, W., Gregory, K. B., et al. (2014). Regional variation in water-related impacts of shale gas development and implications for emerging international plays. Environmental Science and Technology, 48(15), 8298–8306. doi:10.1021/es405432k.

    Article  Google Scholar 

  • McHugh, T., Molofsky, L., Daus, A., & Connor, J. (2014). Comment on “an evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation”. Environmental Science and Technology, 48(6), 3595–3596. doi:10.1021/es405772d.

    Article  Google Scholar 

  • Mitchell, S. F., & Shantz, D. F. (2015). Future feedstocks for the chemical industry—Where will the carbon come from? AIChE Journal, 61(8), 2374–2384. doi:10.1002/aic.14910.

    Article  Google Scholar 

  • Natural gas processing: The crucial link between natural gas production and its transportation to market (2006). Washington, DC: Energy Information Administration.

    Google Scholar 

  • Nicot, J.-P., & Scanlon, B. R. (2012). Water use for shale-gas production in Texas, U.S. Environmental Science and Technology, 46(6), 3580–3586. doi:10.1021/es204602t.

    Article  Google Scholar 

  • Nicot, J. P., Scanlon, B. R., Reedy, R. C., & Costley, R. A. (2014). Source and fate of hydraulic fracturing water in the Barnett Shale: A historical perspective. Environmental Science and Technology, 48(4), 2464–2471. doi:10.1021/es404050r.

    Article  Google Scholar 

  • Noureldin, M. M. B., Elbashir, N. O., & El-Halwagi, M. M. (2014). Optimization and selection of reforming approaches for syngas generation from natural/Shale gas. Industrial and Engineering Chemistry Research, 53(5), 1841–1855. doi:10.1021/ie402382w.

    Article  Google Scholar 

  • Paper, W. (2008). US shale gas—An unconventional resource, unconventional challenge. Halliburton.

    Google Scholar 

  • Parks, L. E., Perry, D., & Fedich, R. (2010). FLEXSORB ®SE A proven reliable acid gas enrichment solvent A2—Benyahia, Farid. In F. T. Eljack (Ed.), Proceedings of the 2nd Annual Gas Processing Symposium (Vol. 2, pp. 229–235). Amsterdam: Elsevier. doi:10.1016/S1876-0147(10)02025-2.

  • Puder, M. G., & Veil, J. A. (2006). Offsite commercial disposal of oil and gas exploration and production waste: Availability, options, and costs (trans: Division ES). Argonne National Laboratory for the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory.

    Google Scholar 

  • Rahm, B. G., & Riha, S. J. (2012). Toward strategic management of shale gas development: Regional, collective impacts on water resources. Environmental Science & Policy, 17, 12–23. doi:10.1016/j.envsci.2011.12.004.

    Article  Google Scholar 

  • Seydor, S. M., Clements, E., Pantelemonitis, S., & Deshpande, V. (2012). Understanding the Marcellus Shale supply chain. Pittsburgh, PA 15260: University of Pittsburgh, Katz Graduate School of Business.

    Google Scholar 

  • Siirola, J. J. (2014). The impact of shale gas in the chemical industry. AIChE Journal, 60(3), 810–819. doi:10.1002/aic.14368.

    Article  Google Scholar 

  • Slutz, J. A., Anderson, J. A., Broderick, R., & Horner, P. H. (2012). Key Shale gas water management strategies: An economic assessment. In International Conference on Health Safety and Environment in Oil and Gas Exploration and Production. Perth, Austrailia: Society of Petroleum Engineers.

    Google Scholar 

  • Small, M. J., Stern, P. C., Bomberg, E., Christopherson, S. M., Goldstein, B. D., Israel, A. L., et al. (2014). Risks and risk governance in unconventional shale gas development. Environmental Science and Technology, 48(15), 8289–8297. doi:10.1021/es502111u.

    Article  Google Scholar 

  • Soeder, D. J., & Kappel, W. M. (2009). Water resources and natural gas production from the Marcellus Shale. Virginia: US Department of the Interior, US Geological Survey Reston.

    Google Scholar 

  • Stephenson, T., Valle, J. E., & Riera-Palou, X. (2011). Modeling the relative GHG emissions of conventional and shale gas production. Environmental Science and Technology, 45(24), 10757–10764. doi:10.1021/es2024115.

    Article  Google Scholar 

  • Swindell, G. S. (2014). Marcellus Shale in Pennsylvania: A 2,600 well study of estimated ultimate recovery. Paper presented at the SPE Annual Meeting. Dallas, TX.

    Google Scholar 

  • van den Heever, S. A., & Grossmann, I. E. (2000). An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model. Industrial and Engineering Chemistry Research, 39(6), 1955–1971. doi:10.1021/ie9906619.

    Article  Google Scholar 

  • Veil, J. A. (2010). Final report water management technologies used by Marcellus shale gas producers. Argonne, IL: Oil & Natural Gas Technology, U.S. Department of Energy.

    Book  Google Scholar 

  • Vengosh, A., Warner, N., Jackson, R., & Darrah, T. (2013). The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States. In Proceedings of the Fourteenth International Symposium on Water-Rock Interaction, WRI (Vol. 14, No. 7, pp. 863–866). doi:10.1016/j.proeps.2013.03.213.

  • Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009. doi:10.1126/science.1235009.

    Article  Google Scholar 

  • Wang, M., Zhang, J., & Xu, Q. (2013). A novel conceptual design by integrating NGL recovery and LNG regasification processes for maximum energy savings. AIChE Journal, 59(12), 4673–4685. doi:10.1002/aic.14231.

    Article  Google Scholar 

  • Weber, C. L., & Clavin, C. (2012). Life cycle carbon footprint of Shale gas: Review of evidence and implications. Environmental Science and Technology, 46(11), 5688–5695. doi:10.1021/es300375n.

    Article  Google Scholar 

  • Yang, L., Manno, J., & Grossmann, I. E. (2014). Optimization models for shale gas water management. AIChE Journal. doi:10.1002/aic.14526.

  • Yang, L., Grossmann, I. E., & Manno, J. (2014b). Optimization models for shale gas water management. AIChE Journal, 60(10), 3490–3501. doi:10.1002/aic.14526.

    Article  Google Scholar 

  • Yang, L., Grossmann, I. E., Mauter, M. S., & Dilmore, R. M. (2015). Investment optimization model for freshwater acquisition and wastewater handling in shale gas production. AIChE Journal, 61(6), 1770–1782. doi:10.1002/aic.14804.

    Article  Google Scholar 

  • Y-Grade Product Specifications. (2012). ETC NGL Transport LLC. http://www.energytransfer.com/documents/UniformY-GradeSpecs-ETCV111612.pdf.

  • Zavala-Araiza, D., Allen, D. T., Harrison, M., George, F. C., & Jersey, G. R. (2015). Allocating methane emissions to natural gas and oil production from shale formations. ACS Sustainable Chemistry and Engineering, 3(3), 492–498. doi:10.1021/sc500730x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqi You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, J., He, C., You, F. (2017). Shale Gas Process and Supply Chain Optimization. In: Kopanos, G., Liu, P., Georgiadis, M. (eds) Advances in Energy Systems Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-42803-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42803-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42802-4

  • Online ISBN: 978-3-319-42803-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics