Interactions Between the Basal Ganglia and the Cerebellum and Role in Neurological Disorders

  • Christopher H. Chen
  • Diany Paola CalderonEmail author
  • Kamran Khodakhah
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)


The cerebellum and the basal ganglia are critically important for motor control, and their cooperation is crucial to generate the motor signals necessary for proper motor execution and coordination. For decades, direct and functionally relevant communication between these structures was thought to be unlikely due to the lack of corroborating anatomical or functional data. More recent novel methodologies have uncovered the presence of a pathway connecting the output of the basal ganglia to the cerebellum and a disynaptic connection from the cerebellum to the input of the basal ganglia via the thalamus in both rodents and primates. In particular, the disynaptic connection allows for a rapid communication between the cerebellum and the basal ganglia and is capable of modulating synaptic plasticity between the basal ganglia and the motor cortex. These mechanistic insights have helped determine how aberrant activity in the cerebellum can dynamically affect the basal ganglia. Cerebellar-induced dystonia is a clear example in which erratic cerebellar burst firing significantly alters normal basal ganglia activity causing dystonia. Further understanding of this impaired interaction will promote the development of novel therapeutic approaches to target defective networks in multiple pathologies.


Basal ganglia Cerebellum Dystonia Parkinson’s disease 


  1. Albanese A, Bhatia K, Bressman SB et al (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28(7):863–873PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedCrossRefGoogle Scholar
  3. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  4. Allen JC, Lindenmayer GE, Schwartz A (1970) An allosteric explanation for ouabain-induced time-dependent inhibition of sodium, potassium-adenosine triphosphatase. Arch Biochem Biophys 141(1):322–328PubMedCrossRefGoogle Scholar
  5. Antal M, Beneduce BM, Regehr WG (2014) The substantia nigra conveys target-dependent excitatory and inhibitory outputs from the basal ganglia to the thalamus. J Neurosci 34(23):8032–8042PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bareš M, Apps R, Kikinis Z et al (2015) Proceedings of the workshop on cerebellum, basal ganglia and cortical connections unmasked in health and disorder held in Brno, Czech Republic, October 17th, 2013. Cerebellum 14(2):142–150PubMedPubMedCentralCrossRefGoogle Scholar
  7. Batini C, Compoint C, Buisseret-Delmas C et al (1992) Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol 315(1):74–84. doi: 10.1002/cne.903150106 PubMedCrossRefGoogle Scholar
  8. Bevan MD, Booth PA, Eaton SA et al (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18(22):9438–9452PubMedGoogle Scholar
  9. Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20(3):261–270. doi: 10.1007/s11065-010-9143-9 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 107(18):8452–8456. doi: 10.1073/pnas.1000496107 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17(5):241–254. doi: 10.1016/j.tics.2013.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brashear A, Dobyns WB, de Carvalho Aguiar P et al (2007) The phenotypic spectrum of rapid-onset dystonia–parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 130(3):828–835PubMedCrossRefGoogle Scholar
  13. Brashear A, Cook JF, Hill DF et al (2012) Psychiatric disorders in rapid-onset dystonia-parkinsonism. Neurology 79(11):1168–1173PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bratus NV, Moroz VM (1978) Responses of cat cerebellar cortex neurons to stimulation of the caudate nucleus, globus pallidus and substantia nigra. Neirofiziologiia 10(4):375–384PubMedGoogle Scholar
  15. Brown LL, Lorden JF (1989) Regional cerebral glucose utilization reveals widespread abnormalities in the motor system of the rat mutant dystonic. J Neurosci 9(11):4033–4041PubMedGoogle Scholar
  16. y Cajal SR (1888) Estructura de los centros neviosos de las aves. Rev Trimest Histol Norm y Patol 1:1–10Google Scholar
  17. y Cajal SR (1889) Sur l’origine et la direction des prolongations nerveuses de la couche moleculaire du cervelet. Int Monatsschr Anat Physiol 6:158–174Google Scholar
  18. Calderon DP, Fremont R, Kraenzlin F et al (2011) The neural substrates of rapid-onset Dystonia-Parkinsonism. Nat Neurosci 14(3):357–365. doi: 10.1038/nn.2753 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen CH, Fremont R, Arteaga-Bracho EE et al (2014) Short latency cerebellar modulation of the basal ganglia. Nat Neurosci 17(12):1767–1775. doi: 10.1038/nn.3868 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chevalier G, Deniau JM (1982) Inhibitory nigral influence on cerebellar evoked responses in the rat ventromedial thalamic nucleus. Exp Brain Res 48(3):369–376PubMedCrossRefGoogle Scholar
  21. Cohen AJ, Leckman JF (1992) Sensory phenomena associated with Gilles de la Tourette’s syndrome. J Clin Psychiatry 53(9):319–323PubMedGoogle Scholar
  22. Coxe W, Snider R (1956) Some relationships of caudate nucleus to cerebellum. Fed Proc 15(1):42Google Scholar
  23. Dalton JC Jr (1861) On the cerebellum, as the centre of co-ordination of the voluntary movements. Am J Med Sci 41(81):83–88CrossRefGoogle Scholar
  24. de Carvalho Aguiar P, Sweadner KJ, Penniston JT et al (2004) Mutations in the Na+/K+-ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43(2):169–175. doi: 10.1016/j.neuron.2004.06.028 PubMedCrossRefGoogle Scholar
  25. DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34(3):414–427PubMedGoogle Scholar
  26. DeLong MR (1972) Activity of basal ganglia neurons during movement. Brain Res 40(1):127–135PubMedCrossRefGoogle Scholar
  27. DeLong MR (1973) Putamen: activity of single units during slow and rapid arm movements. Science 179(4079):1240–1242PubMedCrossRefGoogle Scholar
  28. DeLong MR (1983) The neurophysiologic basis of abnormal movements in basal ganglia disorders. Neurobehav Toxicol Teratol 5(6):611–616PubMedGoogle Scholar
  29. Deniau JM, Kita H, Kitai ST. 1992. Patterns of termination of cerebellar and basal ganglia efferents in the rat thalamus. Strictly segregated and partly overlapping projections. Neuroscience letters 144: 202–6Google Scholar
  30. Dizon MJ, Khodakhah K (2011) The role of interneurons in shaping Purkinje cell responses in the cerebellar cortex. J Neurosci 31(29):10463–10473. doi: 10.1523/JNEUROSCI.1350-11.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dobyns WB, Ozelius LJ, Kramer PL et al (1993) Rapid-onset dystonia-parkinsonism. Neurology 43(12):2596–2602PubMedCrossRefGoogle Scholar
  32. Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12(7–8):961–974PubMedCrossRefGoogle Scholar
  33. Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10(6):732–739PubMedCrossRefGoogle Scholar
  34. Eccles JC, Llinas R, Sasaki K (1966a) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182(2):268–296PubMedPubMedCentralCrossRefGoogle Scholar
  35. Eccles JC, Llinas R, Sasaki K (1966b) The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1(1):82–101PubMedGoogle Scholar
  36. Eidelberg D, Moeller JR, Antonini A et al (1998) Functional brain networks in DYT1 dystonia. Ann Neurol 44(3):303–312. doi: 10.1002/ana.410440304 PubMedCrossRefGoogle Scholar
  37. Ferreira C, Poretti A, Cohen J et al (2014) Novel TUBB4A mutations and expansion of the neuroimaging phenotype of hypomyelination with atrophy of the basal ganglia and cerebellum (H‐ABC). Am J Med Genet Part A 164(7):1802–1807CrossRefGoogle Scholar
  38. Fine EJ, Ionita CC, Lohr L (2002) The history of the development of the cerebellar examination. Semin Neurol 22(4):375–384. doi: 10.1055/s-2002-36759 PubMedCrossRefGoogle Scholar
  39. Flourens MJP (1824) Recherches expérimentales sur les propriétés et les fonctions du système nerveux, dans les animaux vertébrés. Bailliere, ParisGoogle Scholar
  40. Fremont R, Calderon DP, Maleki S et al (2014) Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci 34(35):11723–11732. doi: 10.1523/JNEUROSCI.1409-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fremont R, Tewari A, Khodakhah K (2015) Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia-parkinsonism. Neurobiol Dis 82:200–212. doi: 10.1016/j.nbd.2015.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gerfen CR, Young WS 3rd (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 460(1):161–167PubMedCrossRefGoogle Scholar
  43. Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432PubMedCrossRefGoogle Scholar
  44. Ghaemi M, Raethjen J, Hilker R et al (2002) Monosymptomatic resting tremor and Parkinson’s disease: a multitracer positron emission tomographic study. Mov Disord 17(4):782–788. doi: 10.1002/mds.10125 PubMedCrossRefGoogle Scholar
  45. Ghez C, Thach W (2000) The cerebellum. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science. McGraw-Hill, New YorkGoogle Scholar
  46. Guehl D, Pessiglione M, Francois C et al (2003) Tremor-related activity of neurons in the ‘motor’ thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. Eur J Neurosci 17(11):2388–2400PubMedCrossRefGoogle Scholar
  47. Gulledge AT, Dasari S, Onoue K et al (2013) A sodium-pump-mediated after hyperpolarization in pyramidal neurons. J Neurosci 33(32):13025–13041. doi: 10.1523/JNEUROSCI.0220-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hablitz JJ, Wray DV (1977) Modulation of cerebellar electrical and unit activity by low-frequency stimulation of caudate nucleus in chronic cats. Exp Neurol 55(1):289–294PubMedCrossRefGoogle Scholar
  49. Heimburger RF (1967) Dentatectomy in the treatment of dyskinetic disorders. Confin Neurol 29(2):101–106PubMedCrossRefGoogle Scholar
  50. Heimer L, Wilson R (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium proceedings. Raven Press, New York, pp 177–193Google Scholar
  51. Heiney SA, Kim J, Augustine GJ et al (2014) Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci 34(6):2321–2330. doi: 10.1523/JNEUROSCI.4547-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Heinzen EL, Arzimanoglou A, Brashear A et al (2014) Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 13(5):503–514. doi: 10.1016/S1474-4422(14)70011-0 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hilker R, Voges J, Weisenbach S et al (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24(1):7–16. doi: 10.1097/01.WCB.0000092831.44769.09 PubMedCrossRefGoogle Scholar
  54. Hoshi E, Tremblay L, Feger J et al (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8(11):1491–1493. doi: 10.1038/nn1544 PubMedCrossRefGoogle Scholar
  55. Ichinohe N, Mori F, Shoumura K (2000) A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res 880(1–2):191–197PubMedCrossRefGoogle Scholar
  56. Ito M (1984) The cerebellum and neural control. Raven, New YorkGoogle Scholar
  57. Ito M, Yoshida M, Obata K, Kawai N, Udo M (1970) Inhibitory control of intracerebellar nuclei by the purkinje cell axons. Exp Brain Res 10(1):64–80PubMedCrossRefGoogle Scholar
  58. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi: 10.1136/jnnp.2007.131045 PubMedCrossRefGoogle Scholar
  59. Jansen J, Brodal A (1940) Experimental studies on the intrinsic fibers of the cerebellum II. The cortico-nuclear projection. Cerebellum 10(2):126–180; discussion 123–181Google Scholar
  60. Jeljeli M, Strazielle C, Caston J et al (2000) Effects of centrolateral or medial thalamic lesions on motor coordination and spatial orientation in rats. Neurosci Res 38(2):155–164PubMedCrossRefGoogle Scholar
  61. Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10(10):3421–3438PubMedGoogle Scholar
  62. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23(23):8432–8444PubMedGoogle Scholar
  63. Krystkowiak P, Martinat P, Defebvre L et al (1998) Dystonia after striatopallidal and thalamic stroke: clinicoradiological correlations and pathophysiological mechanisms. J Neurol Neurosurg Psychiatry 65(5):703–708PubMedPubMedCentralCrossRefGoogle Scholar
  64. Larson PS (2014) Deep brain stimulation for movement disorders. Neurotherapeutics 11(3):465–474. doi: 10.1007/s13311-014-0274-1 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Larumbe R, Vaamonde J, Artieda J et al (1993) Reflex blepharospasm associated with bilateral basal ganglia lesion. Mov Disord 8(2):198–200. doi: 10.1002/mds.870080215 PubMedCrossRefGoogle Scholar
  66. LeDoux MS, Lorden JF (1998) Abnormal cerebellar output in the genetically dystonic rat. Adv Neurol 78:63–78PubMedGoogle Scholar
  67. Lenz FA, Tasker RR, Kwan HC et al (1988) Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3-6 Hz component of parkinsonian tremor. J Neurosci 8(3):754–764PubMedGoogle Scholar
  68. Li CL, Parker LO (1969) Effect of dentate stimulation on neuronal activity in the globus pallidus. Exp Neurol 24(2):298–309PubMedCrossRefGoogle Scholar
  69. Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41(3):733–763PubMedGoogle Scholar
  70. Liu HG, Ma Y, Meng DW et al (2013) A rat model of hemidystonia induced by 3-nitropropionic acid. PLoS One 8(10):e79199. doi: 10.1371/journal.pone.0079199 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lohmann K, Klein C (2013) Genetics of dystonia: what’s known? What’s new? What’s next? Mov Disord 28(7):899–905. doi: 10.1002/mds.25536 PubMedCrossRefGoogle Scholar
  72. Lohmann K, Wilcox RA, Winkler S et al (2013) Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 73(4):537–545. doi: 10.1002/ana.23829 PubMedCrossRefGoogle Scholar
  73. MacLeod NK, James TA (1984) Regulation of cerebello-cortical transmission in the rat ventromedial thalamic nucleus. Exp Brain Res 55(3):535–552PubMedGoogle Scholar
  74. Manetto C, Lidsky T (1988) Striatal influences on paravermal cerebellar activity. Exp Brain Res 73(1):53–60PubMedCrossRefGoogle Scholar
  75. Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5(3):241–249. doi: 10.1038/nrn1347 PubMedCrossRefGoogle Scholar
  76. Martinu K, Monchi O (2013) Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behav Neurosci 127(2):222–236. doi: 10.1037/a0031226 PubMedCrossRefGoogle Scholar
  77. Medina JF (2011) The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr Opin Neurobiol 21(4):616–622. doi: 10.1016/j.conb.2011.05.025 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31(2–3):236–250PubMedCrossRefGoogle Scholar
  79. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425PubMedCrossRefGoogle Scholar
  80. Moers-Hornikx VM, Vles JS, Tan SK et al (2011) Cerebellar nuclei are activated by high-frequency stimulation of the subthalamic nucleus. Neurosci Lett 496(2):111–115. doi: 10.1016/j.neulet.2011.03.094 PubMedCrossRefGoogle Scholar
  81. Moroz V, Bures J (1982) Cerebellar unit activity and the movement disruption induced by caudate stimulation in rats. Gen Physiol Biophys 1:71–84Google Scholar
  82. Moroz V, Bureš J (1984) Effects of lateralized reaching and cerebellar stimulation on unit activity of motor cortex and caudate nucleus in rats. Exp Neurol 84(1):47–57PubMedCrossRefGoogle Scholar
  83. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117PubMedCrossRefGoogle Scholar
  84. Narabayashi H, Maeda T, Yokochi F (1987) Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. Appl Neurophysiol 50(1–6):330–337PubMedGoogle Scholar
  85. Nashold BS Jr, Slaughter DG (1969) Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg 31(2):172–186. doi: 10.3171/jns.1969.31.2.0172 PubMedCrossRefGoogle Scholar
  86. Neychev VK, Fan X, Mitev VI et al (2008) The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 131(Pt 9):2499–2509. doi: 10.1093/brain/awn168 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Neychev VK, Gross RE, Lehericy S et al (2011) The functional neuroanatomy of dystonia. Neurobiol Dis 42(2):185–201. doi: 10.1016/j.nbd.2011.01.026 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nieoullon A, Dusticier N (1980) Changes in dopamine release in caudate nuclei and substantia nigrae after electrical stimulation of the posterior interposate nucleus of cat cerebellum. Neurosci Lett 17(1–2):167–172PubMedCrossRefGoogle Scholar
  89. Nieoullon A, Cheramy A, Glowinski J (1978) Release of dopamine in both caudate nuclei and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in the cat. Brain Res 148(1):143–152PubMedCrossRefGoogle Scholar
  90. Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, BerlinCrossRefGoogle Scholar
  91. Palfi S, Ferrante RJ, Brouillet E et al (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci 16(9):3019–3025PubMedGoogle Scholar
  92. Paris Fox M, Williams TD (1968) Responses evoked in the cerebellar cortex by stimulation of the caudate nucleus in the cat. J Physiol 198(2):435–449CrossRefGoogle Scholar
  93. Peall KJ, Waite AJ, Blake DJ et al (2011) Psychiatric disorders, myoclonus dystonia, and the epsilon‐sarcoglycan gene: a systematic review. Mov Disord 26(10):1939–1942PubMedCrossRefGoogle Scholar
  94. Perciavalle V, Berretta S, Li VG et al (1987) Basal ganglia influences on the cerebellum of the cat. Arch Ital Biol 125(1):29–35PubMedGoogle Scholar
  95. Pizoli CE, Jinnah HA, Billingsley ML et al (2002) Abnormal cerebellar signaling induces dystonia in mice. J Neurosci 22(17):7825–7833PubMedGoogle Scholar
  96. Puglisi F, Vanni V, Ponterio G et al (2013) Torsin A localization in the mouse cerebellar synaptic circuitry. PLoS One 8(6):e68063. doi: 10.1371/journal.pone.0068063 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rascol O, Sabatini U, Fabre N et al (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120(Pt 1):103–110PubMedCrossRefGoogle Scholar
  98. Ratcheson RA, Li CL (1969) Effect of dentate stimulation on neuronal activity in the caudate nucleus. Exp Neurol 25(2):268–281PubMedCrossRefGoogle Scholar
  99. Rolando L (1828) Saggio sopra la vera struttura del cervello e sopra le funzioni del sistema nervoso, vol 1 and 2. Presso editore Pietro Marietti libraio in via di Po, TorinoGoogle Scholar
  100. Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M. 1994. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. The Journal of comparative neurology 345: 185–213. doi: 10.1002/cne.903450204 Google Scholar
  101. Sadnicka A, Hoffland BS, Bhatia KP et al (2012) The cerebellum in dystonia—help or hindrance? Clin Neurophysiol 123(1):65–70. doi: 10.1016/j.clinph.2011.04.027 PubMedCrossRefGoogle Scholar
  102. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23(2):394–401PubMedCrossRefGoogle Scholar
  103. Stacy MA (2007) Handbook of dystonia. Neurological disease and therapy, vol 90. Informa Healthcare, New YorkGoogle Scholar
  104. Starr PA, Turner RS, Rau G et al (2004) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus 17(1):E4PubMedCrossRefGoogle Scholar
  105. Sutton AC, O’Connor KA, Pilitsis JG et al (2015) Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct 220(6):3595–3609. doi: 10.1007/s00429-014-0876-8 PubMedCrossRefGoogle Scholar
  106. Sweney MT, Newcomb TM, Swoboda KJ (2015) The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, CAPOS and beyond. Pediatr Neurol 52(1):56–64. doi: 10.1016/j.pediatrneurol.2014.09.015 PubMedCrossRefGoogle Scholar
  107. Szentagothai J (1983) The modular architectonic principle of neural centers. Rev Physiol Biochem Pharmacol 98:11–61PubMedGoogle Scholar
  108. Szentagothai J, Rajkovits K (1959) Ueber den ursprung der kletterfasern des kleinhirns. Z Anat Entwicklungsgesch 121(2):130–141CrossRefGoogle Scholar
  109. Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31(5):785–797PubMedGoogle Scholar
  110. Thach WT (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol 33(4):537–547PubMedGoogle Scholar
  111. Thach W (1975) Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res 88(2):233–241PubMedCrossRefGoogle Scholar
  112. Turgut M, Akalan N, Bertan V et al (1995) Acquired torticollis as the only presenting symptom in children with posterior fossa tumors. Childs Nerv Syst 11(2):86–88PubMedCrossRefGoogle Scholar
  113. Ueki A, Uno M, Anderson M et al (1977) Monosynaptic inhibition of thalamic neurons produced by stimulation of the substantia nigra. Experientia 33(11):1480–1482PubMedCrossRefGoogle Scholar
  114. Ulug AM, Vo A, Argyelan M et al (2011) Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice. Proc Natl Acad Sci U S A 108(16):6638–6643. doi: 10.1073/pnas.1016445108 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Uno M, Yoshida M (1975) Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res 99(2):377–380PubMedCrossRefGoogle Scholar
  116. Uno M, Yoshida M, Hirota I (1970) The mode of cerebello-thalamic relay transmission investigated with intracellular recording from cells of the ventrolateral nucleus of cat’s thalamus. Exp Brain Res 10(2):121–139PubMedCrossRefGoogle Scholar
  117. van der Salm SM, van der Meer JN, Nederveen AJ et al (2013) Functional MRI study of response inhibition in myoclonus dystonia. Exp Neurol 247:623–629. doi: 10.1016/j.expneurol.2013.02.017 PubMedCrossRefGoogle Scholar
  118. van Gaalen J, Giunti P, van de Warrenburg BP (2011) Movement disorders in spinocerebellar ataxias. Mov Disord 26(5):792–800. doi: 10.1002/mds.23584 PubMedCrossRefGoogle Scholar
  119. Vidailhet M, Vercueil L, Houeto JL et al (2005) Stimulation du Pallidum Interne dans la Dystonie. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352(5):459–467. doi: 10.1056/NEJMoa042187 PubMedCrossRefGoogle Scholar
  120. Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington’s disease—neuropathology. Handb Clin Neurol 100:83–100. doi: 10.1016/B978-0-444-52014-2.00004-5 PubMedCrossRefGoogle Scholar
  121. Voorn P, Vanderschuren LJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27(8):468–474. doi: 10.1016/j.tins.2004.06.006 PubMedCrossRefGoogle Scholar
  122. Voskanian GR, Fanardzhian VV (1983) Cerebellar control of the activity of caudate nucleus neurons. Fiziol Zh SSSR Im I M Sechenova 69(11):1409–1416PubMedGoogle Scholar
  123. Watabe-Uchida M, Zhu L, Ogawa SK et al (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74(5):858–873. doi: 10.1016/j.neuron.2012.03.017 PubMedCrossRefGoogle Scholar
  124. Wichmann T, DeLong MR, Guridi J et al (2011) Milestones in research on the pathophysiology of Parkinson’s disease. Mov Disord 26(6):1032–1041. doi: 10.1002/mds.23695 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain 136(Pt 3):696–709. doi: 10.1093/brain/aws360 PubMedCrossRefGoogle Scholar
  126. Yamamoto T, Noda T, Miyata M et al (1984) Electrophysiological and morphological studies on thalamic neurons receiving entopedunculo- and cerebello-thalamic projections in the cat. Brain Res 301(2):231–242PubMedCrossRefGoogle Scholar
  127. Yang J, Luo C, Song W et al (2014) Diffusion tensor imaging in blepharospasm and blepharospasm-oromandibular dystonia. J Neurol 261(7):1413–1424. doi: 10.1007/s00415-014-7359-y PubMedCrossRefGoogle Scholar
  128. Zadro I, Brinar VV, Barun B et al (2008) Cervical dystonia due to cerebellar stroke. Mov Disord 23(6):919–920. doi: 10.1002/mds.21981 PubMedCrossRefGoogle Scholar
  129. Zervas NT, Horner FA, Pickren KS (1967) The treatment of dyskinesia by stereotxic dentatectomy. Confin Neurol 29(2):93–100PubMedCrossRefGoogle Scholar
  130. Zhao Y, Sharma N, LeDoux MS (2011) The DYT1 carrier state increases energy demand in the olivocerebellar network. Neuroscience 177:183–194. doi: 10.1016/j.neuroscience.2011.01.015 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher H. Chen
    • 1
  • Diany Paola Calderon
    • 2
    Email author
  • Kamran Khodakhah
    • 1
  1. 1.Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxUSA
  2. 2.Laboratory for Neurobiology and BehaviorThe Rockefeller UniversityNew YorkUSA

Personalised recommendations