Advertisement

Anatomy and Function of the Direct and Indirect Striatal Pathways

  • Jean-Jacques SoghomonianEmail author
Chapter
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)

Abstract

The striatum is known as the input structure of the basal ganglia because it integrates prominent inputs from several regions of the cerebral cortex and the hippocampus and controls neuronal activities in the SNr and Gpi/entopeduncular nucleus, whose neurons project outside the basal ganglia to motor and premotor brain regions. The striatum exerts its actions on the basal ganglia output via two pathways known as the direct and indirect pathway. These two pathways are central to our current understanding of the functional organization of the basal ganglia. This chapter describes the experimental basis for the distinction between a direct and indirect pathway and the hypothesized functional roles of these two pathways.

Keywords

Striatum Dopamine D1 and D2 receptor Direct pathway Indirect pathway Motor control Associative learning Drug abuse 

References

  1. Ade KK, Janssen MJ, Ortinski PI, Vicini S (2008) Differential tonic GABA conductances in striatal medium spiny neurons. J Neurosci 28(5):1185–1197PubMedCrossRefGoogle Scholar
  2. Aizman O, Brismar P, Uhlen E et al (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3(3):226–230PubMedCrossRefGoogle Scholar
  3. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedCrossRefGoogle Scholar
  4. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  5. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271Google Scholar
  6. Anderson KD, Reiner A (1990) Extensive co-occurrence of substance P and dynorphin in striatal projection neurons: an evolutionarily conserved feature of basal ganglia organization. J Comp Neurol 295(3):339–369PubMedCrossRefGoogle Scholar
  7. Aubert I, Ghorayeb I, Normand E, Bloch B (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418(1):22–32PubMedCrossRefGoogle Scholar
  8. Baker DA, Fuchs RA, Specio SE, Khroyan TV, Neisewander JL (1998) Effects of intraaccumbens administration of SCH-23390 on cocaine-induced locomotion and conditioned place preference. Synapse 30(2):181–193PubMedCrossRefGoogle Scholar
  9. Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27(31):8161–8165PubMedCrossRefGoogle Scholar
  10. Bateup HS, Santini E, Shen W et al (2010) Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A 107(33):14845–14850PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217PubMedCrossRefGoogle Scholar
  12. Beckstead RM, Wooten GF, Trugman JM (1988) Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography. J Comp Neurol 268(1):131–145PubMedCrossRefGoogle Scholar
  13. Bertran-Gonzalez J, Bosch C, Maroteaux M et al (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28(22):5671–5685PubMedCrossRefGoogle Scholar
  14. Besson MJ, Graybiel AM, Quinn B (1990) Co-expression of neuropeptides in the cat’s striatum: an immunohistochemical study of substance P, dynorphin B and enkephalin. Neuroscience 39(1):33–58PubMedCrossRefGoogle Scholar
  15. Biezonski DKP, Trifilieff J, Meszaros JA et al (2015) Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse. J Comp Neurol 523(8):1175–1189PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bishop GA, Chang HT, Kitai ST (1982) Morphological and physiological properties of neostriatal neurons: an intracellular horseradish peroxidase study in the rat. Neuroscience 7(1):179–191PubMedCrossRefGoogle Scholar
  17. Bock R, Shin JH, Kaplan AR et al (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci 16(5):632–638PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bolam JP, Powell JF, Totterdell S et al (1981a) The proportion of neurons in the rat neostriatum that project to the substantia nigra demonstrated using horseradish peroxidase conjugated with wheatgerm agglutinin. Brain Res 220(2):339–343PubMedCrossRefGoogle Scholar
  19. Bolam JP, Somogyi P, Totterdell S, Smith AD (1981b) A second type of striatonigral neuron: a comparison between retrogradely labelled and Golgi-stained neurons at the light and electron microscopic levels. Neuroscience 6(11):2141–2157PubMedCrossRefGoogle Scholar
  20. Bolam JP, Powell JF, Wu JY et al (1985) Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry. J Comp Neurol 237(1):1–20PubMedCrossRefGoogle Scholar
  21. Bonito-Oliva A, DuPont C, Madjid N et al (2016) Involvement of the striatal medium spiny neurons of the direct pathway in the motor stimulant effects of phencyclidine. Int J Neuropsychopharmacol 19(6): 1–9Google Scholar
  22. Castle M, Aymerich MS, Sanchez-Esobar C et al (2005) Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: ipsi- and contralateral projections. J Comp Neurol 483(2):143–153PubMedCrossRefGoogle Scholar
  23. Cazorla M, de Carvalho FD, Chohan MO et al (2014) Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81(1):153–164PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cazorla M, Kang UJ, Kellendor C (2015) Balancing the basal ganglia circuitry: a possible new role for dopamine D2 receptors in health and disease. Mov Disord 30(7):895–903PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cepeda C, Andre VM, Yamazaki I et al (2008) Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 27(3):671–682PubMedCrossRefGoogle Scholar
  26. Cenci MA, Campbell K, Wictorin K, Bjorklund A (1992) Striatal c-fos Induction by Cocaine or Apomorphine Occurs Preferentially in Output Neurons Projecting to the Substantia Nigra in the Rat. Eur J Neurosci 4(4):376–380Google Scholar
  27. Chan HT, Wilson CJ, Kitai ST (1981) Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. Science 213(4510):915–918CrossRefGoogle Scholar
  28. Chang HT, Kitai ST (1982) Large neostriatal neurons in the rat: an electron microscopic study of gold-toned Golgi-stained cells. Brain Res Bull 8(6):631–643PubMedCrossRefGoogle Scholar
  29. Chang HT, Wilson CJ, Kitai SJ (1982) A Golgi study of rat neostriatal neurons: light microscopic analysis. J Comp Neurol 208(2):107–126PubMedCrossRefGoogle Scholar
  30. Chesselet MF, Weiss L, Wuenschell C et al (1987) Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachykinins in the basal ganglia: an in situ hybridization study in the rodent brain. J Comp Neurol 262(1):125–140PubMedCrossRefGoogle Scholar
  31. Cole AJ, Bhat RV, Patt C et al (1992) D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J Neurochem 58(4):1420–1426PubMedCrossRefGoogle Scholar
  32. Crossman AR (1987) Primate models of dyskinesia: the experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21(1):1–40PubMedCrossRefGoogle Scholar
  33. Cui G, Jun SB, Jin X et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494(7436):238–242PubMedPubMedCentralCrossRefGoogle Scholar
  34. Danner H, Pfister C (1979) [Structure of the neostratum in the rat. II]. Gegenbaurs Morphol Jahrb 125(3):349–364PubMedGoogle Scholar
  35. DeLong MR (1983) The neurophysiologic basis of abnormal movements in basal ganglia disorders. Neurobehav Toxicol Teratol 5(6):611–616PubMedGoogle Scholar
  36. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285PubMedCrossRefGoogle Scholar
  37. Deng YP, Lei WL, Reiner A (2006) Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 32(2–4):101–116PubMedCrossRefGoogle Scholar
  38. DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 114(2):245–256PubMedCrossRefGoogle Scholar
  39. DiFiglia M, Pasik P, Pasik T (1979) Developmental aspects of neostriatal organization in monkeys. Appl Neurophysiol 42(1–2):81–83PubMedGoogle Scholar
  40. Dimova R, Vuillet J, Seite R (1980) Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections. Neuroscience 5(9):1581–1596PubMedCrossRefGoogle Scholar
  41. Dragunow M, Robertson GS, Faull RL et al (1990) D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience 37(2):287–294PubMedCrossRefGoogle Scholar
  42. Durieux PF, Bearzatto B, Guiducci S et al (2009) D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci 12(4):393–395PubMedCrossRefGoogle Scholar
  43. Feger J, Crossman AR (1984) Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: a retrograde fluorescence double-labelling study. Neurosci Lett 49(1–2):7–12PubMedCrossRefGoogle Scholar
  44. Ferguson SM, Eskenazi D, Ishikawa M et al (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24PubMedCrossRefGoogle Scholar
  45. Fieblinger T, Graves SM, Sevel LE et al (2014) Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat Commun 5:5316PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fox CA, Andrade AN, Hillman DE et al (1971) The spiny neurons in the primate striatum: a Golgi and electron microscopic study. J Hirnforsch 13(3):181–201PubMedGoogle Scholar
  47. Francis TC, Chandra R, Friend DM et al (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry 77(3):212–222PubMedCrossRefGoogle Scholar
  48. Frank MJ, Seeberger LC, O’Reilly RC, 2004. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306(5703), 1940–1943Google Scholar
  49. Frank MJ (2011) Computational models of motivated action selection in corticostriatal circuits. Curr Opin Neurobiol 21(3):381–386PubMedCrossRefGoogle Scholar
  50. Freeze BS, Kravitz AV, Hammack N et al (2013) Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 33(47):18531–18539PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fukabor R, Okada K, Nishizawa K et al (2012) Striatal direct pathway modulates response time in execution of visual discrimination. Eur J Neurosci 35(5):784–797CrossRefGoogle Scholar
  52. Furuta T, Zhou L, Kaneko T (2002) Preprodynorphin-, preproenkephalin-, preprotachykinin A- and preprotachykinin B-immunoreactive neurons in the accumbens nucleus and olfactory tubercle: double-immunofluorescence analysis. Neuroscience 114(3):611–627PubMedCrossRefGoogle Scholar
  53. Gerfen CR, Young WS (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 460(1):161–167PubMedCrossRefGoogle Scholar
  54. Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432PubMedCrossRefGoogle Scholar
  55. Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28(43):10814–10824PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925PubMedCrossRefGoogle Scholar
  57. Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327(1–2):307–311PubMedCrossRefGoogle Scholar
  58. Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 234(3):317–333PubMedCrossRefGoogle Scholar
  59. Graybiel AM, Ragsdale CW (1979) Fiber connections of the basal ganglia. Prog Brain Res 51:237–283PubMedGoogle Scholar
  60. Harrison MB, Wiley RG, Wooten GF (1990) Selective localization of striatal D1 receptors to striatonigral neurons. Brain Res 528(2):317–322PubMedCrossRefGoogle Scholar
  61. Harrison MB, Wiley RG, Wooten GF (1992) Changes in D2 but not D1 receptor binding in the striatum following a selective lesion of striatopallidal neurons. Brain Res 590(1–2):305–310PubMedCrossRefGoogle Scholar
  62. Hersch SM, Ciliax BJ, Gutekunst CA et al (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15(7 pt 2):5222–5237PubMedGoogle Scholar
  63. Herve D, Levi-Strauss M, Marey-Semper I et al (1993) G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. J Neurosci 13(5):2237–2248PubMedGoogle Scholar
  64. Hikida T, Kimura K, Wada N et al (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907PubMedCrossRefGoogle Scholar
  65. Hikida T, Yawata S, Yamaguchi T et al (2013) Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proc Natl Acad Sci U S A 110(1):342–347PubMedCrossRefGoogle Scholar
  66. Hikida T, Morita M, Macpherson T (2016) Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning. Neurosci Res 108:1–5PubMedCrossRefGoogle Scholar
  67. Hiroi N, White NM (1991) The amphetamine conditioned place preference: differential involvement of dopamine receptor subtypes and two dopaminergic terminal areas. Brain Res 552(1):141–152PubMedCrossRefGoogle Scholar
  68. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedCrossRefGoogle Scholar
  69. Jin X, Tecuapetla F, Costa RM (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17(3):423–430PubMedPubMedCentralCrossRefGoogle Scholar
  70. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jones-Cage C, Stratford TR, Wirtshafter D (2012) Differential effects of the adenosine A(2)A agonist CGS-21680 and haloperidol on food-reinforced fixed ratio responding in the rat. Psychopharmacology (Berl) 220(1):205–213CrossRefGoogle Scholar
  72. Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10(10):3421–3438PubMedGoogle Scholar
  73. Kawaguchi Y, Aosaki T, Kubota Y (1997) Cholinergic and GABAergic interneurons in the striatum. Nihon Shinkei Seishin Yakurigaku Zasshi 17(2):87–90PubMedGoogle Scholar
  74. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277(5692):93–96PubMedCrossRefGoogle Scholar
  75. Keeler JF, Pretsell DO, Robbins TW (2014) Functional implications of dopamine D1 vs. D2 receptors: a ‘prepare and select’ model of the striatal direct vs. indirect pathways. Neuroscience 282C:156–175CrossRefGoogle Scholar
  76. Kemp JM, Powell TP (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 262(845):383–401PubMedCrossRefGoogle Scholar
  77. Kenny PJ, Voren G, Johnson PM (2013) Dopamine D2 receptors and striatopallidal transmission in addiction and obesity. Curr Opin Neurobiol 23(4):535–538PubMedPubMedCentralCrossRefGoogle Scholar
  78. Koo JW, Lobo MK, Chaudhury B et al (2014) Loss of BDNF signaling in D1R-expressing NAc neurons enhances morphine reward by reducing GABA inhibition. Neuropsychopharmacology 39(11):2646–2653PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15(6):816–818PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kubota Y, Inagaki S, Shimada S et al (1991) Spiny and aspiny types of neuropeptide Y immunoreactive neurons in the monkey neostriatum. Neurosci Lett 122(1):109–112PubMedCrossRefGoogle Scholar
  82. Laprade N, Soghomonian JJ (1995) Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum. Brain Res Mol Brain Res 34(1):65–74PubMedCrossRefGoogle Scholar
  83. Larson ER, Ariano MA (1994) Dopamine receptor binding on identified striatonigral neurons. Neurosci Lett 172(1–2):101–106PubMedCrossRefGoogle Scholar
  84. Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355(3):418–426PubMedCrossRefGoogle Scholar
  85. Le Moine C, Normand E, Bloch B (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci U S A 88(10):4205–4209PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lee T, Kaneko T, Taki K et al (1997) Preprodynorphin-, preproenkephalin-, and preprotachykinin-expressing neurons in the rat neostriatum: an analysis by immunocytochemistry and retrograde tracing. J Comp Neurol 386(2):229–244PubMedCrossRefGoogle Scholar
  87. Lei W, Jiao Y, Del Mar N et al (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24(38):8289–8299PubMedCrossRefGoogle Scholar
  88. Lester J, Fink S, Aronin N et al (1993) Colocalization of D1 and D2 dopamine receptor mRNAs in striatal neurons. Brain Res 621(1):106–110PubMedCrossRefGoogle Scholar
  89. Lobo MK, Karsten SL, Gray M et al (2006) FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci 9(3):443–452PubMedCrossRefGoogle Scholar
  90. Luo Z, Volkow ND, Heintz N, Pan Y et al (2011) Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. J Neurosci 31(37):13180–13190PubMedPubMedCentralCrossRefGoogle Scholar
  91. Matamales M, Bertran-Gonzalez J, Salomon L et al (2009) Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One 4(3), e4770PubMedPubMedCentralCrossRefGoogle Scholar
  92. Meador-Woodruff JH, Mansour A, Healy DJ et al (1991) Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5(4):231–242PubMedGoogle Scholar
  93. Micioni Di Bonaventura MV, Cifani C, Lambertucci C et al (2012) A2A adenosine receptor agonists reduce both high-palatability and low-palatability food intake in female rats. Behav Pharmacol 23(5–6):567–574PubMedCrossRefGoogle Scholar
  94. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425PubMedCrossRefGoogle Scholar
  95. Nadjar A, Brotchie JM, Guigoni C et al (2006) Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 26(34):8653–8661PubMedCrossRefGoogle Scholar
  96. Nagai T, McGeer PL, McGeer EG (1983) Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain. J Comp Neurol 218(2):220–238PubMedCrossRefGoogle Scholar
  97. Nakanishi S, Hikida T, Yawata S (2014) Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience 282C:49–59CrossRefGoogle Scholar
  98. Nishizawa K, Fukabori R, Okada K et al (2012) Striatal indirect pathway contributes to selection accuracy of learned motor actions. J Neurosci 32(39):13421–13432PubMedCrossRefGoogle Scholar
  99. O’Hare JK, Ade KK, Sukharnikova T et al (2016) Pathway-specific striatal substrates for habitual behavior. Neuron 89(3):472–479PubMedCrossRefGoogle Scholar
  100. Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229(3):374–392PubMedCrossRefGoogle Scholar
  101. Parent A, Bouchard C, Smith Y (1984a) The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res 303(2):385–390PubMedCrossRefGoogle Scholar
  102. Parent A, De Bellefeuille L, Mackey A (1984b) Organization of primate internal pallidum as revealed by fluorescent retrograde tracing of its efferent projections. Adv Neurol 40:15–20PubMedGoogle Scholar
  103. Parent A, Charara A, Pinault D (1995a) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698(1–2):280–284PubMedCrossRefGoogle Scholar
  104. Parent A, Cote PY, Lavoie B (1995b) Chemical anatomy of primate basal ganglia. Prog Neurobiol 46(2–3):131–197PubMedCrossRefGoogle Scholar
  105. Penny GR, Afsharpour S, Kitai ST (1986) The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience 17(4):1011–1045PubMedCrossRefGoogle Scholar
  106. Preston RJ, Bishop GA, Kitai ST (1980) Medium spiny neuron projection from the rat striatum: an intracellular horseradish peroxidase study. Brain Res 183(2):253–263PubMedCrossRefGoogle Scholar
  107. Pritchett CE, Pardee AL, McGuirk SR et al (2010) The role of nucleus accumbens adenosine-opioid interaction in mediating palatable food intake. Brain Res 1306:85–92PubMedCrossRefGoogle Scholar
  108. Reiner A, Medina L, Haber SN (1999) The distribution of dynorphinergic terminals in striatal target regions in comparison to the distribution of substance P-containing and enkephalinergic terminals in monkeys and humans. Neuroscience 88(3):775–793PubMedCrossRefGoogle Scholar
  109. Ribak CE, Vaughn JE, Roberts E (1979) The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J Comp Neurol 187(2):261–283PubMedCrossRefGoogle Scholar
  110. Robertson GS, Vincent SR, Fibiger HC (1992) D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neuroscience 49(2):285–296PubMedCrossRefGoogle Scholar
  111. Rothwell PE, Hayton SJ, Sun GL et al (2015) Input- and output-specific regulation of serial order performance by corticostriatal circuits. Neuron 88(2):345–356PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sano H, Chiken S, Hikida T et al (2013) Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci 33(17):7583–7594PubMedCrossRefGoogle Scholar
  113. Schiffmann SN, Fisone G, Moresco R et al (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83(5):277–292PubMedPubMedCentralCrossRefGoogle Scholar
  114. Schultz W (2011) Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron 69(4):603–617PubMedCrossRefGoogle Scholar
  115. Schultz W (2013) Updating dopamine reward signals. Curr Opin Neurobiol 23(2):229–238PubMedPubMedCentralCrossRefGoogle Scholar
  116. Seger CA, Spiering BJ (2011) A critical review of habit learning and the Basal Ganglia. Front Syst Neurosci 5:66Google Scholar
  117. Shan Q, Christie MJ, Balleine BW (2015) Plasticity in striatopallidal projection neurons mediates the acquisition of habitual actions. Eur J Neurosci 42(4):2097–2104PubMedCrossRefGoogle Scholar
  118. Shuen JA, Chen M, Gloss B et al (2008) Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci 28(11):2681–2685PubMedCrossRefGoogle Scholar
  119. Sippy T, Lapray D, Crochet S et al (2015) Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron 88(2):298–305PubMedPubMedCentralCrossRefGoogle Scholar
  120. Smith Y, Parent A, Seguela P, Descarries L (1987) Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol 259(1):50–64Google Scholar
  121. Soghomonian JJ, Chesselet MF (2000) GABA in the basal ganglia. In: Martin D, Olsen R (eds) GABA in the nervous system. Lippincott Williams and Wilkins, Philadelphia, pp 265–291Google Scholar
  122. Somogyi P, Smith AD (1979) Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase transport procedure at both light and electron microscopic levels. Brain Res 178(1):3–15PubMedCrossRefGoogle Scholar
  123. Stoof JC, Kababian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294(5839):366–368PubMedCrossRefGoogle Scholar
  124. Stoof JC, Kababian JW (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35(23):2281–2296PubMedCrossRefGoogle Scholar
  125. Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16(20):6579–6591PubMedGoogle Scholar
  126. Svenningsson P, LeMoine C, Kull B et al (1997) Cellular expression of adenosine A2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas. Neuroscience 80(4):1171–1185PubMedCrossRefGoogle Scholar
  127. Szabo J (1967) The efferent projections of the putamen in the monkey. Exp Neurol 19(4):463–476PubMedCrossRefGoogle Scholar
  128. Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27(1):1–15PubMedCrossRefGoogle Scholar
  129. Tanaka D (1980) Development of spiny and aspiny neurons in the caudate nucleus of the dog during the first postnatal month. J Comp Neurol 192(2):247–263PubMedCrossRefGoogle Scholar
  130. Thibault D, Loustalot F, Fortin GM et al (2013) Evaluation of D1 and D2 dopamine receptor segregation in the developing striatum using BAC transgenic mice. PLoS One 8(7), e67219PubMedPubMedCentralCrossRefGoogle Scholar
  131. Valjent E, Bertran-Gonzalez J, Herve D et al (2009) Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci 32(10):538–547PubMedCrossRefGoogle Scholar
  132. Vincent SR, Kimura H, McGeer EG (1982) GABA-transaminase in the basal ganglia: a pharmacohistochemical study. Brain Res 251(1):93–104PubMedCrossRefGoogle Scholar
  133. Wang HB, Laverghetta AV, Foehring R et al (2006) Single-cell RT-PCR, in situ hybridization histochemical, and immunohistochemical studies of substance P and enkephalin co-occurrence in striatal projection neurons in rats. J Chem Neuroanat 31(3):178–199PubMedCrossRefGoogle Scholar
  134. Wang HB, Deng YP, Reiner A (2007) In situ hybridization histochemical and immunohistochemical evidence that striatal projection neurons co-containing substance P and enkephalin are overrepresented in the striosomal compartment of striatum in rats. Neurosci Lett 425(3):195–199PubMedPubMedCentralCrossRefGoogle Scholar
  135. Weiner DM, Levey AI, Sunhara RK et al (1991) D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci U S A 88(5):1859–1863PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wilson CJ, Groves PM (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J Comp Neurol 194(3):599–615PubMedCrossRefGoogle Scholar
  137. Wilson CJ, Phelan KD (1982) Dual topographic representation of neostriatum in the globus pallidus of rats. Brain Res 243(2):354–359PubMedCrossRefGoogle Scholar
  138. Wu Y, Richard S, Parent A (2000) The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res 38(1):49–62PubMedCrossRefGoogle Scholar
  139. Yamaguchi T, Goto A, Nakahara I et al (2015) Role of PKA signaling in D2 receptor-expressing neurons in the core of the nucleus accumbens in aversive learning. Proc Natl Acad Sci U S A 112(36):11383–11388PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yawata S, Yamaguchi T, Danjo T et al (2012) Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc Natl Acad Sci U S A 109(31):12764–12769PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yung KK, Bloam JP, Smith AD et al (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65(3):709–730PubMedCrossRefGoogle Scholar
  142. Zalocusky KA, Ramakrishnan C, Lerner TN, Davidson TJ, Knutson B, Deisseroth K (2016) Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature 531(7596):642–646Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA

Personalised recommendations