Motivational Deficits in Parkinson’s Disease: Role of the Dopaminergic System and Deep-Brain Stimulation of the Subthalamic Nucleus

  • Sabrina BouletEmail author
  • Carole Carcenac
  • Marc Savasta
  • Sébastien Carnicella
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)


Beyond motor symptoms, Parkinson’s disease (PD) patients also exhibit a cluster of neuropsychiatric symptoms, which are now recognized as major contributors to morbidity, severely impairing the patient’s quality of life. Among them, apathy, with a frequency that varies from 16.5 to 70 % depending on the assessment scale used and the population studied, appears to be a major neuropsychiatric feature of PD. In addition, apathy is viewed as a major postoperative complication of deep brain stimulation of the subthalamic nucleus (STN-DBS). Despite this prevalence, the pathogenesis of apathy in PD remains elusive. Importantly, levodopa and dopaminergic agonists, such as the D2/D3 receptor agonist ropinirole, greatly attenuate apathy in Parkinsonian patient, suggesting an important role of dopamine in its pathophysiology. Nevertheless, it is difficult to disentangle the specific role of the dopaminergic denervation and that of DBS in the development of apathy since it has been reported that STN-DBS influences dopaminergic function on its own. Approaches relying on experimental models of PD and STN-DBS thereby can be useful tools to dissect the potential causal contribution of these two factors and their possible interactions. In this chapter, we present recent experimental and clinical data, which provides a better understanding of the role of the dopaminergic system and STN-DBS in the motivational deficits observed in PD. In light of this literature, apathy can be considered as a plurifactorial motivational deficit with a critical role of dopamine acting synergistically with the DBS of STN regions associated with the nigrostriatal and the mesolimbic system.


Parkinson’s disease Apathy Deep-brain stimulation Subthalamic nucleus 



This work was supported by the Institut National de la Santé et de la Recherche Médicale, Fondation NeuroDis, Association France Parkinson, Ministère de la Recherche et de la Technologie (MRT), Région Rhône-Alpes (ARC 2), Fondation de France, Agence nationale de la recherche (ANR13 SAMA001401), and Grenoble Alpes University.

S.C., S.B. wrote the chapter with the help of the other authors C.C. and M.S.

Conflicts of Interest none.


  1. Aarsland D, Bronnick K, Alves G et al (2009a) The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson’s disease. J Neurol Neurosurg Psychiatry 80(8):928–930PubMedCrossRefGoogle Scholar
  2. Aarsland D, Marsh L, Schrag A (2009b) Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord 24(15):2175–2186. doi: 10.1002/mds.22589 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abosch A, Kapur S, Lang AE et al (2003) Stimulation of the subthalamic nucleus in Parkinson’s disease does not produce striatal dopamine release. Neurosurgery 53(5):1095–1102, discussion 1102-1095PubMedCrossRefGoogle Scholar
  4. Agid Y, Ruberg M, Dubois B, Javoy-Agid F (1984) Biochemical substrates of mental disturbances in Parkinson’s disease. Adv Neurol 40:211–218PubMedGoogle Scholar
  5. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  6. APA (1994) Diagnostic and statistical manual of mental disorders—DSM IV, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  7. APA (2013) Diagnostic and statistical manual of mental disorders—DSM 5, 5th edn. American Psychiatric, Washington, DCGoogle Scholar
  8. Ballanger B, Klinger H, Eche J et al (2012) Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson’s disease. Mov Disord 27(1):84–89. doi: 10.1002/mds.23895 PubMedCrossRefGoogle Scholar
  9. Baunez C, Lardeux S (2011) Frontal cortex-like functions of the subthalamic nucleus. Front Syst Neurosci 5:83. doi: 10.3389/fnsys.2011.00083 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9(10):2086–2099PubMedCrossRefGoogle Scholar
  11. Baunez C, Dias C, Cador M et al (2005) The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nat Neurosci 8(4):484–489PubMedGoogle Scholar
  12. Baunez C, Christakou A, Chudasama Y et al (2007) Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats. Eur J Neurosci 25(4):1187–1194PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baunez C, Yelnik J, Mallet L (2011) Six questions on the subthalamic nucleus: lessons from animal models and from stimulated patients. Neuroscience 198:193–204. doi: 10.1016/j.neuroscience.2011.09.059, pii:S0306-4522(11)01145-6PubMedCrossRefGoogle Scholar
  14. Bejjani BP, Dormont D, Pidoux B et al (2000) Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92(4):615–625. doi: 10.3171/jns.2000.92.4.0615 PubMedCrossRefGoogle Scholar
  15. Belin D, Jonkman S, Dickinson A et al (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199(1):89–102PubMedCrossRefGoogle Scholar
  16. Belin D, Belin-Rauscent A, Murray JE et al (2013) Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol 23(4):564–572PubMedCrossRefGoogle Scholar
  17. Benabid AL, Benazzouz A, Hoffmann D et al (1998) Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord 13(Suppl 3):119–125PubMedGoogle Scholar
  18. Benabid AL, Krack PP, Benazzouz A et al (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55(12 Suppl 6):S40–S44PubMedGoogle Scholar
  19. Benazzouz A, Gross C, Feger J et al (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5(4):382–389PubMedCrossRefGoogle Scholar
  20. Beninger RJ, Ranaldi R (1993) Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding. Behav Brain Res 55(2):203–212PubMedCrossRefGoogle Scholar
  21. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191(3):391–431. doi: 10.1007/s00213-006-0578-x CrossRefGoogle Scholar
  22. Beurrier C, Bioulac B, Audin J et al (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356PubMedGoogle Scholar
  23. Bonito-Oliva A, Masini D, Fisone G (2014) A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions. Front Behav Neurosci 8:290. doi: 10.3389/fnbeh.2014.00290 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Branchi I, D’Andrea I, Armida M et al (2008) Nonmotor symptoms in Parkinson’s disease: investigating early-phase onset of behavioral dysfunction in the 6-hydroxydopamine-lesioned rat model. J Neurosci Res 86(9):2050–2061. doi: 10.1002/jnr.21642 PubMedCrossRefGoogle Scholar
  25. Brizard M, Carcenac C, Bemelmans AP et al (2006) Functional reinnervation from remaining DA terminals induced by GDNF lentivirus in a rat model of early Parkinson’s disease. Neurobiol Dis 21(1):90–101PubMedCrossRefGoogle Scholar
  26. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brown RG, Pluck G (2000) Negative symptoms: the ‘pathology’ of motivation and goal-directed behaviour. Trends Neurosci 23(9):412–417PubMedCrossRefGoogle Scholar
  28. Bruet N, Windels F, Bertrand A et al (2001) High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 60(1):15–24PubMedCrossRefGoogle Scholar
  29. Carcenac C, Favier M, Vachez Y et al (2015) Subthalamic deep brain stimulation differently alters striatal dopaminergic receptor levels in rats. Mov Disord 30(13):1739–1749. doi: 10.1002/mds.26146 PubMedCrossRefGoogle Scholar
  30. Carnicella S, Drui G, Boulet S et al (2014) Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl Psychiatry 4:e401PubMedPubMedCentralCrossRefGoogle Scholar
  31. Carriere N, Besson P, Dujardin K et al (2010) Apathy in Parkinson’s disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis. Mov Disord 29(7):897–903CrossRefGoogle Scholar
  32. Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474PubMedCrossRefGoogle Scholar
  33. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3):235–245PubMedCrossRefGoogle Scholar
  34. Chen L, Deltheil T, Turle-Lorenzo N et al (2014) SK channel blockade reverses cognitive and motor deficits induced by nigrostriatal dopamine lesions in rats. Int J Neuropsychopharmacol 17(8):1295–1306PubMedCrossRefGoogle Scholar
  35. Craufurd D, Thompson JC, Snowden JS (2001) Behavioral changes in Huntington disease. Neuropsychiatry Neuropsychol Behav Neurol 14(4):219–226PubMedGoogle Scholar
  36. Creed MC, Hamani C, Nobrega JN (2013) Effects of repeated deep brain stimulation on depressive- and anxiety-like behavior in rats: comparing entopeduncular and subthalamic nuclei. Brain Stimul 6(4):506–514PubMedCrossRefGoogle Scholar
  37. Czernecki V, Pillon B, Houeto JL et al (2002) Motivation, reward, and Parkinson’s disease: influence of dopatherapy. Neuropsychologia 40(13):2257–2267PubMedCrossRefGoogle Scholar
  38. Czernecki V, Pillon B, Houeto JL et al (2005) Does bilateral stimulation of the subthalamic nucleus aggravate apathy in Parkinson’s disease? J Neurol Neurosurg Psychiatry 76(6):775–779PubMedPubMedCentralCrossRefGoogle Scholar
  39. Czernecki V, Schupbach M, Yaici S et al (2008) Apathy following subthalamic stimulation in Parkinson disease: a dopamine responsive symptom. Mov Disord 23(7):964–969. doi: 10.1002/mds.21949 PubMedCrossRefGoogle Scholar
  40. Darbaky Y, Forni C, Amalric M et al (2003) High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. Eur J Neurosci 18(4):951–956, pii:2803PubMedCrossRefGoogle Scholar
  41. Darbaky Y, Baunez C, Arecchi P et al (2005) Reward-related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport 16(11):1241–1244, pii:00001756-200508010-00022PubMedCrossRefGoogle Scholar
  42. David R, Koulibaly M, Benoit M et al (2008) Striatal dopamine transporter levels correlate with apathy in neurodegenerative diseases A SPECT study with partial volume effect correction. Clin Neurol Neurosurg 110(1):19–24. pii:S0303-8467(07)00231-4Google Scholar
  43. Delaville C, Chetrit J, Abdallah K et al (2012) Emerging dysfunctions consequent to combined monoaminergic depletions in Parkinsonism. Neurobiol Dis 45(2):763–773. pii:S0969-9961(11)00355-XGoogle Scholar
  44. Del-Monte J, Capdevielle D, Gely-Nargeot MC et al (2013) [Evolution of the concept of apathy: the need for a multifactorial approach in schizophrenia]. Encephale 39(Suppl 1):S57–S63. pii:S0013-7006(12)00281-3Google Scholar
  45. Denheyer M, Kiss ZH, Haffenden AM (2009) Behavioral effects of subthalamic deep brain stimulation in Parkinson’s disease. Neuropsychologia 47(14):3203–3209. pii:S0028-3932(09)00314-5Google Scholar
  46. Deniau JM, Degos B, Bosch C et al (2010) Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci 32(7):1080–1091. doi: 10.1111/j.1460-9568.2010.07413.x PubMedCrossRefGoogle Scholar
  47. Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35(1):68–77. pii:S0166-2236(11)00192-5Google Scholar
  48. Deroche-Gamonet V, Piat F, Le Moal M et al (2002) Influence of cue-conditioning on acquisition, maintenance and relapse of cocaine intravenous self-administration. Eur J Neurosci 15(8):1363–1370, pii:1974PubMedCrossRefGoogle Scholar
  49. Desbonnet L, Temel Y, Visser-Vandewalle V et al (2004) Premature responding following bilateral stimulation of the rat subthalamic nucleus is amplitude and frequency dependent. Brain Res 1008(2):198–204PubMedCrossRefGoogle Scholar
  50. Dostrovsky JO, Levy R, Wu JP et al (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84(1):570–574PubMedGoogle Scholar
  51. Drapier D, Drapier S, Sauleau P et al (2006) Does subthalamic nucleus stimulation induce apathy in Parkinson’s disease? J Neurol 253(8):1083–1091. doi: 10.1007/s00415-006-0177-0 PubMedCrossRefGoogle Scholar
  52. Drijgers RL, Dujardin K, Reijnders JS et al (2012) Validation of diagnostic criteria for apathy in Parkinson’s disease. Parkinsonism Relat Disord 16(10):656–660. pii:S1353-8020(10)00213-0Google Scholar
  53. Drui G, Carnicella S, Carcenac C et al (2014) Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol Psychiatry 19(3):358–367PubMedCrossRefGoogle Scholar
  54. Dujardin K, Defebvre L, Krystkowiak P et al (2001) Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol 248(7):603–611PubMedCrossRefGoogle Scholar
  55. Dujardin K, Sockeel P, Delliaux M et al (2008) The Lille Apathy Rating Scale: validation of a caregiver-based version. Mov Disord 23(6):845–849. doi: 10.1002/mds.21968 PubMedCrossRefGoogle Scholar
  56. Dujardin K, Sockeel P, Delliaux M et al (2009) Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov Disord 24(16):2391–2397. doi: 10.1002/mds.22843 PubMedCrossRefGoogle Scholar
  57. Eskow Jaunarajs KL, George JA, Bishop C (2012) L-DOPA-induced dysregulation of extrastriatal dopamine and serotonin and affective symptoms in a bilateral rat model of Parkinson’s disease. Neuroscience 218:243–256PubMedCrossRefGoogle Scholar
  58. Favier M, Duran T, Carcenac C et al (2014) Pramipexole reverses Parkinson’s disease-related motivational deficits in rats. Mov Disord 29(7):912–920. doi: 10.1002/mds.25837 PubMedCrossRefGoogle Scholar
  59. Fibiger HC, Zis AP, McGeer EG (1973) Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: similarities to the lateral hypothalamic syndrome. Brain Res 55(1):135–148, pii:0006-8993(73)90493-9PubMedCrossRefGoogle Scholar
  60. Funkiewiez A, Ardouin C, Caputo E et al (2004) Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(6):834–839PubMedPubMedCentralCrossRefGoogle Scholar
  61. Garcia-Rill E, Hyde J, Kezunovic N et al (2014) The physiology of the pedunculopontine nucleus: implications for deep brain stimulation. J Neural Transm 122(2):225–235. doi: 10.1007/s00702-014-1243-x PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gervais-Bernard H, Xie-Brustolin J, Mertens P et al (2009) Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. J Neurol 256(2):225–233. doi: 10.1007/s00415-009-0076-2 PubMedCrossRefGoogle Scholar
  63. Hartung H, Tan SK, Steinbusch HM et al (2011) High-frequency stimulation of the subthalamic nucleus inhibits the firing of juxtacellular labelled 5-HT-containing neurones. Neuroscience 186:135–145PubMedCrossRefGoogle Scholar
  64. Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814PubMedPubMedCentralCrossRefGoogle Scholar
  65. Herzog J, Volkmann J, Krack P et al (2003) Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord 18(11):1332–1337. doi: 10.1002/mds.10518 PubMedCrossRefGoogle Scholar
  66. Hilker R, Voges J, Ghaemi M et al (2003) Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans. Mov Disord 18(1):41–48. doi: 10.1002/mds.10297 PubMedCrossRefGoogle Scholar
  67. Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1(4):304–309. doi: 10.1038/1124 PubMedCrossRefGoogle Scholar
  68. Hollerman JR, Tremblay L, Schultz W (1998) Influence of reward expectation on behavior-related neuronal activity in primate striatum. J Neurophysiol 80(2):947–963PubMedGoogle Scholar
  69. Houeto JL, Mesnage V, Mallet L et al (2002) Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72(6):701–707PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ikemoto S, Glazier BS, Murphy JM et al (1997) Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17(21):8580–8587PubMedGoogle Scholar
  71. Ilango A, Kesner AJ, Keller KL et al (2014) Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci 34(3):817–822PubMedPubMedCentralCrossRefGoogle Scholar
  72. Isella V, Melzi P, Grimaldi M et al (2002) Clinical, neuropsychological, and morphometric correlates of apathy in Parkinson’s disease. Mov Disord 17(2):366–371. doi: 10.1002/mds.10041 PubMedCrossRefGoogle Scholar
  73. Ishizaki J, Mimura M (2011) Dysthymia and apathy: diagnosis and treatment. Depress Res Treat 2011:893905. doi: 10.1155/2011/893905 PubMedPubMedCentralGoogle Scholar
  74. Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152(2):259–277PubMedCrossRefGoogle Scholar
  75. Kirsch-Darrow L, Zahodne LB, Marsiske M et al (2011) The trajectory of apathy after deep brain stimulation: from pre-surgery to 6 months post-surgery in Parkinson’s disease. Parkinsonism Relat Disord 17(3):182–188PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880. doi: 10.1056/NEJM198804073181402 PubMedCrossRefGoogle Scholar
  77. Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260(3):435–452. doi: 10.1002/cne.902600309 PubMedCrossRefGoogle Scholar
  78. Kitai ST, Deniau JM (1981) Cortical inputs to the subthalamus: intracellular analysis. Brain Res 214(2):411–415, pii:0006-8993(81)91204-XPubMedCrossRefGoogle Scholar
  79. Klavir O, Flash S, Winter C et al (2009) High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp Neurol 215(1):101–109. pii:S0014-4886(08)00370-1Google Scholar
  80. Krack P, Pollak P, Limousin P et al (1998) Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121(Pt 3):451–457PubMedCrossRefGoogle Scholar
  81. Krack P, Kumar R, Ardouin C et al (2001) Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 16(5):867–875. doi: 10.1002/mds.1174 PubMedCrossRefGoogle Scholar
  82. Krack P, Batir A, Van Blercom N et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934PubMedCrossRefGoogle Scholar
  83. Krack P, Hariz MI, Baunez C et al (2010) Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 33(10):474–484. pii:S0166-2236(10)00105-0Google Scholar
  84. Krause M, Fogel W, Heck A et al (2001) Deep brain stimulation for the treatment of Parkinson’s disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry 70(4):464–470PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kringelbach ML, Jenkinson N, Owen SL et al (2007) Translational principles of deep brain stimulation. Nat Rev Neurosci 8(8):623–635PubMedCrossRefGoogle Scholar
  86. Kumar R, Lozano AM, Sime E et al (1999) Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology 53(3):561–566PubMedCrossRefGoogle Scholar
  87. Lacombe E, Carcenac C, Boulet S et al (2007) High-frequency stimulation of the subthalamic nucleus prolongs the increase in striatal dopamine induced by acute l-3,4-dihydroxyphenylalanine in dopaminergic denervated rats. Eur J Neurosci 26(6):1670–1680PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lardeux S, Baunez C (2008) Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology 33(3):634–642PubMedCrossRefGoogle Scholar
  89. Lardeux S, Pernaud R, Paleressompoulle D et al (2009) Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. J Neurophysiol 102(4):2526–2537PubMedCrossRefGoogle Scholar
  90. Le Jeune F, Drapier D, Bourguignon A et al (2009) Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 73(21):1746–1751PubMedCrossRefGoogle Scholar
  91. Le Jeune F, Peron J, Grandjean D et al (2010) Subthalamic nucleus stimulation affects limbic and associative circuits: a PET study. Eur J Nucl Med Mol Imaging 37(8):1512–1520. doi: 10.1007/s00259-010-1436-y PubMedCrossRefGoogle Scholar
  92. Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71(1):155–234PubMedGoogle Scholar
  93. Leblois A, Boraud T, Meissner W et al (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26(13):3567–3583PubMedCrossRefGoogle Scholar
  94. Leentjens AF, Koester J, Fruh B et al (2009) The effect of pramipexole on mood and motivational symptoms in Parkinson’s disease: a meta-analysis of placebo-controlled studies. Clin Ther 31(1):89–98PubMedCrossRefGoogle Scholar
  95. Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16(7):916–928PubMedCrossRefGoogle Scholar
  96. Lhommee E, Klinger H, Thobois S et al (2012) Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135(Pt 5):1463–1477PubMedCrossRefGoogle Scholar
  97. Li S, Arbuthnott GW, Jutras MJ et al (2007) Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 98(6):3525–3537PubMedCrossRefGoogle Scholar
  98. Limousin P, Pollak P, Benazzouz A et al (1995a) Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov Disord 10(5):672–674. doi: 10.1002/mds.870100523 PubMedCrossRefGoogle Scholar
  99. Limousin P, Pollak P, Benazzouz A et al (1995b) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345(8942):91–95PubMedCrossRefGoogle Scholar
  100. Lindgren HS, Dunnett SB (2012) Cognitive dysfunction and depression in Parkinson’s disease: what can be learned from rodent models? Eur J Neurosci 35(12):1894–1907. doi: 10.1111/j.1460-9568.2012.08162.x PubMedCrossRefGoogle Scholar
  101. Loas G, Krystkowiak P, Godefroy O (2012) Anhedonia in Parkinson’s disease: an overview. J Neuropsychiatry Clin Neurosci 24(4):444–451PubMedCrossRefGoogle Scholar
  102. Mallet L, Schupbach M, N’Diaye K et al (2007) Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104(25):10661–10666PubMedPubMedCentralCrossRefGoogle Scholar
  103. Marin RS (1990) Differential diagnosis and classification of apathy. Am J Psychiatry 147(1):22–30PubMedCrossRefGoogle Scholar
  104. Marin RS, Biedrzycki RC, Firinciogullari S (1991) Reliability and validity of the Apathy Evaluation Scale. Psychiatry Res 38(2):143–162, pii:0165-1781(91)90040-VPubMedCrossRefGoogle Scholar
  105. Mathai A, Smith Y (2011) The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 5:64. doi: 10.3389/fnsys.2011.00064 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matsumura M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67(6):1615–1632PubMedGoogle Scholar
  107. McIntyre CC, Hahn PJ (2010) Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis 38(3):329–337PubMedCrossRefGoogle Scholar
  108. McIntyre CC, Savasta M, Kerkerian-Le Goff L et al (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115(6):1239–1248PubMedCrossRefGoogle Scholar
  109. Meissner W, Reum T, Paul G et al (2001) Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic nucleus in 6-hydroxydopamine lesioned rats. Neurosci Lett 303(3):165–168, pii:S030439400101758XPubMedCrossRefGoogle Scholar
  110. Meissner W, Harnack D, Paul G et al (2002) Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats. Neurosci Lett 328(2):105–108, pii:S0304394002004639PubMedCrossRefGoogle Scholar
  111. Meissner W, Harnack D, Reese R et al (2003) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85(3):601–609, pii:1665PubMedCrossRefGoogle Scholar
  112. Montgomery EB, Baker KB (2000) Mechanisms of deep brain stimulation and future technical developments. Neurol Res 22(3):259–266PubMedCrossRefGoogle Scholar
  113. Moro E, Scerrati M, Romito LM et al (1999) Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 53(1):85–90PubMedCrossRefGoogle Scholar
  114. Nambu A (2004) A new dynamic model of the cortico-basal ganglia loop. Prog Brain Res 143:461–466PubMedCrossRefGoogle Scholar
  115. Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16(Suppl 2):S3–S9PubMedCrossRefGoogle Scholar
  116. Nowend KL, Arizzi M, Carlson BB et al (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69(3-4):373–382, pii:S0091-3057(01)00524-XPubMedCrossRefGoogle Scholar
  117. Nozaki T, Sugiyama K, Yagi S et al (2013) Effect of subthalamic nucleus stimulation during exercise on the mesolimbocortical dopaminergic region in Parkinson’s disease: a positron emission tomography study. J Cereb Blood Flow Metab 33(3):415–421PubMedCrossRefGoogle Scholar
  118. Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 1129:35–46PubMedPubMedCentralCrossRefGoogle Scholar
  119. Parent A, Hazrati LN (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91-127. Google Scholar
  120. Parent A, Hazrati LN (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154Google Scholar
  121. Paul G, Reum T, Meissner W et al (2000) High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic metabolism in the naive rat. Neuroreport 11(3):441–444PubMedCrossRefGoogle Scholar
  122. Paxinos, G. & Watson, C. The rat brain in stereotaxic coordinates (Elesvier Academic Press, San Diego, 1998)Google Scholar
  123. Pazo JH, Hocht C, Barcelo AC et al (2010) Effect of electrical and chemical stimulation of the subthalamic nucleus on the release of striatal dopamine. Synapse 64(12):905–915. doi: 10.1002/syn.20809 PubMedCrossRefGoogle Scholar
  124. Pedersen KF, Alves G, Bronnick K et al (2009) Apathy in drug-naive patients with incident Parkinson’s disease: the Norwegian ParkWest study. J Neurol 257(2):217–223. doi: 10.1007/s00415-009-5297-x PubMedCrossRefGoogle Scholar
  125. Peron J, Fruhholz S, Verin M et al (2013) Subthalamic nucleus: a key structure for emotional component synchronization in humans. Neurosci Biobehav Rev 37(3):358–373PubMedCrossRefGoogle Scholar
  126. Pluck GC, Brown RG (2002) Apathy in Parkinson’s disease. J Neurol Neurosurg Psychiatry 73(6):636–642PubMedPubMedCentralCrossRefGoogle Scholar
  127. Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15(Suppl 1):14–20PubMedCrossRefGoogle Scholar
  128. Politis M, Wu K, Loane C et al (2012) Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci Transl Med 4(128):128ra141CrossRefGoogle Scholar
  129. Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11(11):760–772PubMedPubMedCentralCrossRefGoogle Scholar
  130. Reijnders JS, Scholtissen B, Weber WE et al (2010) Neuroanatomical correlates of apathy in Parkinson’s disease: a magnetic resonance imaging study using voxel-based morphometry. Mov Disord 25(14):2318–2325. doi: 10.1002/mds.23268 PubMedCrossRefGoogle Scholar
  131. Remy P, Doder M, Lees A, Turjanski N et al (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128(Pt 6):1314–1322PubMedCrossRefGoogle Scholar
  132. Rossi MA, Sukharnikova T, Hayrapetyan VY et al (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8(6):e65799PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rouaud T, Lardeux S, Panayotis N et al (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci U S A 107(3):1196–1200PubMedCrossRefGoogle Scholar
  134. Saint-Cyr JA, Trepanier LL, Kumar R et al (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123(Pt 10):2091–2108PubMedCrossRefGoogle Scholar
  135. Salamone JD, Correa M, Mingote S et al (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305(1):1–8. doi: 10.1124/jpet.102.035063 PubMedCrossRefGoogle Scholar
  136. Salamone JD, Correa M, Farrar A et al (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl) 191(3):461–482. doi: 10.1007/s00213-006-0668-9 CrossRefGoogle Scholar
  137. Salamone JD, Correa M, Nunes EJ et al (2012) The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond. J Exp Anal Behav 97(1):125–146PubMedPubMedCentralCrossRefGoogle Scholar
  138. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363(9423):1783–1793PubMedCrossRefGoogle Scholar
  139. Santiago RM, Barbieiro J, Lima MM et al (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 34(6):1104–1114PubMedCrossRefGoogle Scholar
  140. Savasta M, Carcenac C, Boulet S (2011) Mechanisms of high frequency stimulation of the subthalamic nucleus in Parkinson’s disease: from local to distal effects on the basal ganglia network. In: Rana AQ (ed) Diagnosis of Parkinson’s diseaseGoogle Scholar
  141. Schmidt L, d’Arc BF, Lafargue G et al (2008) Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain 131(Pt 5):1303–1310PubMedGoogle Scholar
  142. Sensi M, Eleopra R, Cavallo MA et al (2004) Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism Relat Disord 10(4):247–251PubMedCrossRefGoogle Scholar
  143. Sjoerds Z, Luigjes J, van den Brink W et al (2014) The role of habits and motivation in human drug addiction: a reflection. Front Psychiatry 5:8. doi: 10.3389/fpsyt.2014.00008 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Smith Y, Bevan MD, Shink E et al (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387, pii:S0306452298000049PubMedCrossRefGoogle Scholar
  145. Sockeel P, Dujardin K, Devos D et al (2006) The Lille apathy rating scale (LARS), a new instrument for detecting and quantifying apathy: validation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 77(5):579–584PubMedPubMedCentralCrossRefGoogle Scholar
  146. Sokoloff P, Diaz J, Le Foll B et al (2006) The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5(1):25–43PubMedCrossRefGoogle Scholar
  147. Soulas T, Gurruchaga JM, Palfi S et al (2008) Attempted and completed suicides after subthalamic nucleus stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry 79(8):952–954PubMedCrossRefGoogle Scholar
  148. Starkstein SE, Brockman S (2011) Apathy and Parkinson’s disease. Curr Treat Options Neurol 13(3):267–273. doi: 10.1007/s11940-011-0118-9 PubMedCrossRefGoogle Scholar
  149. Starkstein SE, Merello M, Jorge R et al (2009) The syndromal validity and nosological position of apathy in Parkinson’s disease. Mov Disord 24(8):1211–1216. doi: 10.1002/mds.22577 PubMedCrossRefGoogle Scholar
  150. Strafella AP, Sadikot AF, Dagher A (2003) Subthalamic deep brain stimulation does not induce striatal dopamine release in Parkinson’s disease. Neuroreport 14(9):1287–1289. doi: 10.1097/01.wnr.0000081873.45938.56 PubMedCrossRefGoogle Scholar
  151. Tadaiesky MT, Dombrowski PA, Figueiredo CP et al (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience 156(4):830–840. doi: 10.1016/j.neuroscience.2008.08.035, pii:S0306-4522(08)01247-5PubMedCrossRefGoogle Scholar
  152. Tan SK, Hartung H, Visser-Vandewalle V et al (2012) A combined in vivo neurochemical and electrophysiological analysis of the effect of high-frequency stimulation of the subthalamic nucleus on 5-HT transmission. Exp Neurol 233(1):145–153PubMedCrossRefGoogle Scholar
  153. Teagarden MA, Rebec GV (2007) Subthalamic and striatal neurons concurrently process motor, limbic, and associative information in rats performing an operant task. J Neurophysiol 97(3):2042–2058PubMedCrossRefGoogle Scholar
  154. Temel Y (2010) Limbic effects of high-frequency stimulation of the subthalamic nucleus. Vitam Horm 82:47–63PubMedCrossRefGoogle Scholar
  155. Temel Y, Visser-Vandewalle V, Aendekerk B et al (2005) Acute and separate modulation of motor and cognitive performance in parkinsonian rats by bilateral stimulation of the subthalamic nucleus. Exp Neurol 193(1):43–52PubMedCrossRefGoogle Scholar
  156. Temel Y, Kessels A, Tan S et al (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12(5):265–272PubMedCrossRefGoogle Scholar
  157. Temel Y, Boothman LJ, Blokland A et al (2007) Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A 104(43):17087–17092PubMedPubMedCentralCrossRefGoogle Scholar
  158. Temel Y, Tan S, Vlamings R et al (2009) Cognitive and limbic effects of deep brain stimulation in preclinical studies. Front Biosci (Landmark Ed) 14:1891–1901CrossRefGoogle Scholar
  159. Thobois S, Ardouin C, Lhommee E et al (2010) Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain 133(Pt 4):1111–1127PubMedCrossRefGoogle Scholar
  160. Tong ZY, Kingsbury AE, Foster OJ (2000) Up-regulation of tyrosine hydroxylase mRNA in a sub-population of A10 dopamine neurons in Parkinson’s disease. Brain Res Mol Brain Res 79(1-2):45–54, pii:S0169328X00000899PubMedCrossRefGoogle Scholar
  161. Torack RM, Morris JC (1988) The association of ventral tegmental area histopathology with adult dementia. Arch Neurol 45(5):497–501PubMedCrossRefGoogle Scholar
  162. Tran AH, Tamura R, Uwano T et al (2002) Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice. Proc Natl Acad Sci U S A 99(13):8986–8991PubMedPubMedCentralCrossRefGoogle Scholar
  163. Troster AI (2009) Neuropsychology of deep brain stimulation in neurology and psychiatry. Front Biosci (Landmark Ed) 14:1857–1879, pii:3347CrossRefGoogle Scholar
  164. Ulla M, Thobois S, Llorca PM et al (2011) Contact dependent reproducible hypomania induced by deep brain stimulation in Parkinson’s disease: clinical, anatomical and functional imaging study. J Neurol Neurosurg Psychiatry 82(6):607–614PubMedCrossRefGoogle Scholar
  165. Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122PubMedCrossRefGoogle Scholar
  166. Uslaner JM, Yang P, Robinson TE (2005) Subthalamic nucleus lesions enhance the psychomotor-activating, incentive motivational, and neurobiological effects of cocaine. J Neurosci 25(37):8407–8415PubMedCrossRefGoogle Scholar
  167. van Duijn E, Kingma EM, van der Mast RC (2007) Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci 19(4):441–448PubMedCrossRefGoogle Scholar
  168. Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17(Suppl 3):S69–S72. doi: 10.1002/mds.10144 PubMedCrossRefGoogle Scholar
  169. Volkmann J, Daniels C, Witt K (2010) Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol 6(9):487–498PubMedGoogle Scholar
  170. Volkow ND, Baler RD, Goldstein RZ (2011a) Addiction: pulling at the neural threads of social behaviors. Neuron 69(4):599–602PubMedPubMedCentralCrossRefGoogle Scholar
  171. Volkow ND, Wang GJ, Newcorn JH et al (2011b) Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry 16(11):1147–1154PubMedCrossRefGoogle Scholar
  172. Voon V, Kubu C, Krack P et al (2006) Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 21(Suppl 14):S305–S327. doi: 10.1002/mds.20963 PubMedCrossRefGoogle Scholar
  173. Voon V, Krack P, Lang AE et al (2008) A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain 131(Pt 10):2720–2728PubMedPubMedCentralCrossRefGoogle Scholar
  174. Voon V, Mehta AR, Hallett M (2011) Impulse control disorders in Parkinson’s disease: recent advances. Curr Opin Neurol 24(4):324–330. doi: 10.1097/WCO.0b013e3283489687 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Weintraub D, Newberg AB, Cary MS et al (2005) Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med 46(2):227–232. pii:46/2/227Google Scholar
  176. WHO (2010) International statistical classification of diseases and related health problems 10th revision (ICD-10) version for 2010. In: World Health Organization (ed)Google Scholar
  177. Winstanley CA, Baunez C, Theobald DE et al (2005) Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur J Neurosci 21(11):3107–3116PubMedCrossRefGoogle Scholar
  178. Winter C, von Rumohr A, Mundt A et al (2007) Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats. Behav Brain Res 184(2):133–141PubMedCrossRefGoogle Scholar
  179. Winter C, Lemke C, Sohr R et al (2008) High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat. Exp Brain Res 185(3):497–507. doi: 10.1007/s00221-007-1171-1 PubMedCrossRefGoogle Scholar
  180. Wise RA (1973) Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29(3):203–210PubMedCrossRefGoogle Scholar
  181. Wise RA (2009) Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends Neurosci 32(10):517–524PubMedPubMedCentralCrossRefGoogle Scholar
  182. Witjas T, Baunez C, Henry JM, Delfini M, Regis J et al (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20(8):1052–1055. doi: 10.1002/mds.20501 PubMedCrossRefGoogle Scholar
  183. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476PubMedCrossRefGoogle Scholar
  184. York MK, Dulay M, Macias A et al (2008) Cognitive declines following bilateral subthalamic nucleus deep brain stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 79(7):789–795PubMedCrossRefGoogle Scholar
  185. Zhao XD, Cao YQ, Liu HH et al (2009) Long term high frequency stimulation of STN increases dopamine in the corpus striatum of hemiparkinsonian rhesus monkey. Brain Res 1286:230–238PubMedCrossRefGoogle Scholar
  186. Zis AP, Fibiger HC, Phillips AG (1974) Reversal by L-dopa of impaired learning due to destruction of the dopaminergic nigro-neostriatal projection. Science 185(4155):960–962PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sabrina Boulet
    • 1
    • 2
    Email author
  • Carole Carcenac
    • 1
    • 2
  • Marc Savasta
    • 1
    • 2
  • Sébastien Carnicella
    • 1
    • 2
  1. 1.INSERM U1216GrenobleFrance
  2. 2.GIN, Université Grenoble AlpesGrenobleFrance

Personalised recommendations