The Basal Ganglia and Decision-Making in Neuropsychiatric Disorders

  • Sule Tinaz
  • Chantal E. SternEmail author
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)


Decision-making is the process of choosing an appropriate series of goal-directed actions. It is a multidisciplinary topic that has been approached from different angles in various research fields including psychology, neuroscience, and economics. Our decisions are informed by our past (memory), dependent on the current situation (context), and are motivated by rewards. Basic reward features including magnitude, probability, and time play a central role in decision-making processes. Extensive research has explored the elements of decision-making in detailed computational models and demonstrated the potential neurophysiological mechanisms for decision-making using functional neuroimaging methods. There is an extensive literature on the role of basal ganglia-cortical circuits and dopamine in decision-making in healthy people and individuals with neuropsychiatric disorders. In this chapter, we provide an overview of terms used in decision-making research and an overview of the behavioral and neural correlates of decision-making. This is followed by a description of how different aspects of decision-making are affected in a number of neuropsychiatric conditions. Basic research provides a framework for analyzing potential pathological mechanisms within the basal ganglia-cortical circuits that contribute to decision-making deficits across different neuropsychiatric disorders. In particular, disturbances in dopaminergic pathways and the regulation of these pathways could contribute to alterations in decision-making in disorders including Parkinson’s disease, Attention Deficit Hyperactivity Disorder, Obsessive Compulsive Disorder, Tourette syndrome, Schizophrenia, and Mood disorders.


Goal-directed behavior Reward Basal ganglia Dopamine Parkinson’s disease Attention deficit hyperactivity disorder Obsessive compulsive disorder Tourette syndrome Schizophrenia Mood disorders 


  1. Abler B, Walter H, Erk S et al (2006) Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage 31(2):790–795PubMedCrossRefGoogle Scholar
  2. Abouzari M, Oberg S, Gruber A, Tata M (2015) Interactions among attention-deficit hyperactivity disorder (ADHD) and problem gambling in a probabilistic reward-learning task. Behav Brain Res 291:237–243. doi: 10.1016/j.bbr.2015.05.041 [Epub ahead of print]PubMedCrossRefGoogle Scholar
  3. Agid Y, Ruberg M, Javoy-Agid F et al (1993) Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol 60:148–164PubMedGoogle Scholar
  4. Barkley RA, Edwards G, Laneri M et al (2001) Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). J Abnorm Child Psychol 29(6):541–556PubMedCrossRefGoogle Scholar
  5. Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3(7):563–573PubMedCrossRefGoogle Scholar
  6. Baxter MG, Parker A, Lindner CC et al (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20(11):4311–4319PubMedGoogle Scholar
  7. Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3):7–15PubMedCrossRefGoogle Scholar
  8. Berns GS, McClure SM, Pagnoni G, Montague PR (2001) Predictability modulates human brain response to reward. J Neurosci 21(8):2793–2798PubMedGoogle Scholar
  9. Berns GS, Laibson D, Loewenstein G (2007) Intertemporal choice—toward an integrative framework. Trends Cogn Sci 11(11):482–488PubMedCrossRefGoogle Scholar
  10. Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol 9(1):65–73PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brand M, Labudda K, Kalbe E et al (2004) Decision-making impairments in patients with Parkinson’s disease. Behav Neurol 15(3-4):77–85PubMedCrossRefGoogle Scholar
  12. Breiter HC, Rauch SL, Kwong KK et al (1996) Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psychiatry 53(7):595–606PubMedCrossRefGoogle Scholar
  13. Brown TI, Ross RS, Tobyne SM, Stern CE (2012) Cooperative interactions between hippocampal and striatal systems support flexible navigation. Neuroimage 2:1316–1330CrossRefGoogle Scholar
  14. Carmona S, Hoekzema E, Ramos-Quiroga JA et al (2012) Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: a within-subject case-control neuroimaging study. Hum Brain Mapp 33(10):2350–2361PubMedCrossRefGoogle Scholar
  15. Castrioto A, Funkiewiez A, Debû B et al (2015) Iowa gambling task impairment in Parkinson’s disease can be normalised by reduction of dopaminergic medication after subthalamic stimulation. J Neurol Neurosurg Psychiatry 86(2):186–190PubMedCrossRefGoogle Scholar
  16. Chen C, Takahashi T, Nakagawa S et al (2015) Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev 55:247–267PubMedCrossRefGoogle Scholar
  17. Christopoulos GI, Tobler PN, Bossaerts P (2009) Neural correlates of value, risk, and risk aversion contributing to decision making under risk. J Neurosci 29(40):12574–12583PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cicero DC, Martin EA, Becker TM, Kerns JG (2014) Reinforcement learning deficits in people with schizophrenia persist after extended trials. Psychiatry Res 220(3):760–764PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11(12):1136–1143PubMedCrossRefGoogle Scholar
  20. Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22(11):4563–4567PubMedGoogle Scholar
  21. Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41(11):1431–1441PubMedCrossRefGoogle Scholar
  22. Cools R, Altamirano L, D’Esposito M (2006) Reversal learning in Parkinson’s disease depends on medication status and outcome valence. Neuropsychologia 44(10):1663–1673PubMedCrossRefGoogle Scholar
  23. Cromwell HC, Schultz W (2003) Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. J Neurophysiol 89(5):2823–2838PubMedCrossRefGoogle Scholar
  24. Dai Z, Harrow SE, Song X et al (2013) Gambling, delay, and probability discounting in adults with and without ADHD. J Atten Disord (in press)Google Scholar
  25. Dayan P, Huys QJ (2008) Serotonin, inhibition, and negative mood. PLoS Comput Biol 4(2):e4PubMedPubMedCentralCrossRefGoogle Scholar
  26. De Martino B, Kumaran D, Seymour B, Dolan RJ (2006) Frames, biases, and rational decision-making in the human brain. Science 313(5787):684–687PubMedPubMedCentralCrossRefGoogle Scholar
  27. De Martino B, Camerer CF, Adolphs R (2010) Amygdala damage eliminates monetary loss aversion. Proc Natl Acad Sci U S A 107(8):3788–3792PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dodd ML, Klos KJ, Bower JH et al (2005) Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol 62(9):1377–1381PubMedCrossRefGoogle Scholar
  29. Dreher JC (2013) Neural coding of computational factors affecting decision making. Prog Brain Res 202:289–320PubMedCrossRefGoogle Scholar
  30. Dreher JC, Kohn P, Berman KF (2006) Neural coding of distinct statistical properties of reward information in humans. Cereb Cortex 16(4):561–573PubMedCrossRefGoogle Scholar
  31. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1-2):93–118PubMedPubMedCentralCrossRefGoogle Scholar
  32. Driver-Dunckley E, Samanta J, Stacy M (2003) Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology 61(3):422–423PubMedCrossRefGoogle Scholar
  33. Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10(3):308–317PubMedCrossRefGoogle Scholar
  34. Euteneuer F, Schaefer F, Stuermer R et al (2009) Dissociation of decision-making under ambiguity and decision-making under risk in patients with Parkinson’s disease: a neuropsychological and psychophysiological study. Neuropsychologia 47(13):2882–2890PubMedCrossRefGoogle Scholar
  35. Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614):1898–1902PubMedCrossRefGoogle Scholar
  36. Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19(8):1120–1136PubMedCrossRefGoogle Scholar
  37. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318(5854):1309–1312PubMedCrossRefGoogle Scholar
  38. Freeman RD, Fast DK, Burd L et al (2000) An international perspective on Tourette syndrome: selected findings from 3,500 individuals in 22 countries. Dev Med Child Neurol 42(7):436–447PubMedCrossRefGoogle Scholar
  39. Gorwood P (2008) Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci 10(3):291–299PubMedPubMedCentralGoogle Scholar
  40. Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 111(Pt 2):299–321PubMedCrossRefGoogle Scholar
  41. Gradin VB, Kumar P, Waiter G et al (2011) Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134(Pt 6):1751–1764PubMedCrossRefGoogle Scholar
  42. Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86(3):141–155PubMedCrossRefGoogle Scholar
  43. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62(5):429–437PubMedPubMedCentralCrossRefGoogle Scholar
  44. Grinband J, Hirsch J, Ferrera VP (2006) A neural representation of categorization uncertainty in the human brain. Neuron 49(5):757–763PubMedCrossRefGoogle Scholar
  45. Hartmann MN, Hager OM, Reimann AV (2015) Apathy but not diminished expression in schizophrenia is associated with discounting of monetary rewards by physical effort. Schizophr Bull 41(2):503–512PubMedCrossRefGoogle Scholar
  46. Harvey PO, Pruessner J, Czechowska Y, Lepage M (2007) Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects. Mol Psychiatry 12(8):767–775CrossRefGoogle Scholar
  47. Hauser TU, Iannaccone R, Ball J et al (2014) Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder. JAMA Psychiatry 71(10):1165–1173PubMedCrossRefGoogle Scholar
  48. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11(7):503–513PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hikosaka O, Sesack SR, Lecourtier L (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 28(46):11825–11829PubMedPubMedCentralCrossRefGoogle Scholar
  50. Housden CR, O’Sullivan SS, Joyce EM (2010) Intact reward learning but elevated delay discounting in Parkinson’s disease patients with impulsive-compulsive spectrum behaviors. Neuropsychopharmacology 35(11):2155–2164PubMedPubMedCentralCrossRefGoogle Scholar
  51. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hsu M, Bhatt M, Adolphs R (2005) Neural systems responding to degrees of uncertainty in human decision-making. Science 310(5754):1680–1683PubMedCrossRefGoogle Scholar
  53. Huettel SA, Song AW, McCarthy G et al (2005) Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices. J Neurosci 25(13):3304–3311PubMedCrossRefGoogle Scholar
  54. Huettel SA, Stowe CJ, Gordon EM et al (2006) Neural signatures of economic preferences for risk and ambiguity. Neuron 49(5):765–775PubMedCrossRefGoogle Scholar
  55. Ibanez A, Cetkovich M, Petroni A et al (2012) The neural basis of decision-making and reward processing in adults with euthymic bipolar disorder or attention-deficit/hyperactivity disorder (ADHD). PLoS One 7(5):e37306PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kahneman D (2003) A perspective on judgment and choice: mapping bounded rationality. Am Psychol 58(9):697–720PubMedCrossRefGoogle Scholar
  57. Kim HW, Kang JI, Namkoong K et al (2015) Further evidence of a dissociation between decision-making under ambiguity and decision-making under risk in obsessive-compulsive disorder. J Affect Disord 176:118–124PubMedCrossRefGoogle Scholar
  58. Kish SJ, Shannak K, Hornykiewicz O et al (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880PubMedCrossRefGoogle Scholar
  59. Knowlton BJ, Mangels JA, Squire LR et al (1996) A neostriatal habit learning system in humans. Science 273(5280):1399–1402PubMedCrossRefGoogle Scholar
  60. Kobayashi S, Schultz W (2008) Influence of reward delays on responses of dopamine neurons. J Neurosci 28(31):7837–7846PubMedPubMedCentralCrossRefGoogle Scholar
  61. Krain AL, Wilson AM, Arbuckle R et al (2006) Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making. Neuroimage 32(1):477–484PubMedCrossRefGoogle Scholar
  62. Labudda K, Brand M, Mertens M et al (2010) Decision making under risk condition in patients with Parkinson’s disease: a behavioural and fMRI study. Behav Neurol 23(3):131–143PubMedCrossRefGoogle Scholar
  63. Leckman JF, Bloch MH, Smith ME et al (2010) Neurobiological substrates of Tourette’s disorder. J Child Adolesc Psychopharmacol 20(4):237–247PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lee D (2013) Decision making: from neuroscience to psychiatry. Neuron 78(2):233–248PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lempert KM, Pizzagalli DA (2010) Delay discounting and future-directed thinking in anhedonic individuals. J Behav Ther Exp Psychiatry 41(3):258–264PubMedPubMedCentralCrossRefGoogle Scholar
  66. Li CT, Lai WS, Liu CM, Hsu YF (2014) Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning. Front Psychol 5:1282PubMedPubMedCentralGoogle Scholar
  67. Macdonald PA, Monchi O (2011) Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinsons Dis 2011:572743PubMedPubMedCentralGoogle Scholar
  68. Mason L, O’Sullivan N, Montaldi D et al (2014) Decision-making and trait impulsivity in bipolar disorder are associated with reduced prefrontal regulation of striatal reward valuation. Brain 137(Pt 8):2346–2355PubMedPubMedCentralCrossRefGoogle Scholar
  69. Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459(7248):837–841PubMedPubMedCentralCrossRefGoogle Scholar
  70. Matsuzawa D, Shirayama Y, Niitsu T et al (2015) Deficits in emotion based decision-making in schizophrenia; a new insight based on the Iowa Gambling Task. Prog Neuropsychopharmacol Biol Psychiatry 57:52–59PubMedCrossRefGoogle Scholar
  71. McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–346PubMedCrossRefGoogle Scholar
  72. Menzies L, Chamberlain SR, Laird AR et al (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32(3):525–549PubMedCrossRefGoogle Scholar
  73. Metereau E, Dreher JC (2013) Cerebral correlates of salient prediction error for different rewards and punishments. Cereb Cortex 23(2):477–487PubMedCrossRefGoogle Scholar
  74. Milenkova M, Mohammadi B, Kollewe K (2011) Intertemporal choice in Parkinson’s disease. Mov Disord 26(11):2004–2010PubMedCrossRefGoogle Scholar
  75. Miyapuram KP, Pammi VS (2013) Understanding decision neuroscience: a multidisciplinary perspective and neural substrates. Prog Brain Res 202:239–266PubMedCrossRefGoogle Scholar
  76. Morris RW, Vercammen A, Lenroot R et al (2012) Disambiguating ventral striatum fMRI-related BOLD signal during reward prediction in schizophrenia. Mol Psychiatry 17(3):280–289CrossRefGoogle Scholar
  77. Mowinckel AM, Pedersen ML, Eilertsen E, Biele G (2015) A meta-analysis of decision-making and attention in adults with ADHD. J Atten Disord 19(5):355–367PubMedCrossRefGoogle Scholar
  78. Must A, Szabó Z, Bódi N et al (2006) Sensitivity to reward and punishment and the prefrontal cortex in major depression. J Affect Disord 90(2-3):209–215PubMedCrossRefGoogle Scholar
  79. Must A, Horvath S, Nemeth VL, Janka Z (2013) The Iowa Gambling Task in depression—what have we learned about sub-optimal decision-making strategies? Front Psychol 4:732PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nakao T, Nakagawa A, Yoshiura T et al (2005) Brain activation of patients with obsessive-compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: a functional magnetic resonance imaging study. Biol Psychiatry 57(8):901–910PubMedCrossRefGoogle Scholar
  81. Nusslock R, Almeida JR, Forbes EE (2012) Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord 14(3):249–260PubMedCrossRefGoogle Scholar
  82. O’Doherty JP (2007) Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards, and choices. Ann N Y Acad Sci 1121:254–272PubMedCrossRefGoogle Scholar
  83. O’Doherty JP, Dayan P, Friston K et al (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337PubMedCrossRefGoogle Scholar
  84. Osman M, Wilkinson L, Beigi M et al (2008) Patients with Parkinson’s disease learn to control complex systems via procedural as well as non-procedural learning. Neuropsychologia 46(9):2355–2363PubMedCrossRefGoogle Scholar
  85. Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441(7090):223–226PubMedPubMedCentralCrossRefGoogle Scholar
  86. Palminteri S, Lebreton M, Worbe Y et al (2009) Pharmacological modulation of subliminal learning in Parkinson’s and Tourette’s syndromes. Proc Natl Acad Sci U S A 106(45):19179–19184PubMedPubMedCentralCrossRefGoogle Scholar
  87. Palminteri S, Lebreton M, Worbe Y et al (2011) Dopamine-dependent reinforcement of motor skill learning: evidence from Gilles de la Tourette syndrome. Brain 134(Pt 8):2287–2301PubMedCrossRefGoogle Scholar
  88. Perretta JG, Pari G, Beninger RJ (2005) Effects of Parkinson disease on two putative nondeclarative learning tasks: probabilistic classification and gambling. Cogn Behav Neurol 18(4):185–192PubMedCrossRefGoogle Scholar
  89. Peters J, Büchel C (2010) Neural representations of subjective reward value. Behav Brain Res 213(2):135–141PubMedCrossRefGoogle Scholar
  90. Peterson DA, Elliott C, Song DD (2009) Probabilistic reversal learning is impaired in Parkinson’s disease. Neuroscience 163(4):1092–1101PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pizzagalli DA, Holmes AJ, Dillon DG et al (2009) Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry 166(6):702–710PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pollak Y, Shoham R (2015) Feedback may harm: role of feedback in probabilistic decision making of adolescents with ADHD. J Abnorm Child Psychol 43(7):1233–1242PubMedCrossRefGoogle Scholar
  93. Preuschoff K, Bossaerts P, Quartz S (2006) Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51(3):381–390PubMedCrossRefGoogle Scholar
  94. Prévost C, Pessiglione M, Météreau E et al (2010) Separate valuation subsystems for delay and effort decision costs. J Neurosci 30(42):14080–14090PubMedCrossRefGoogle Scholar
  95. Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35(1):192–216PubMedCrossRefGoogle Scholar
  96. Proulx CD, Hikosaka O, Malinow R (2014) Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17(9):1146–1152PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rushworth MF, Behrens TE, Rudebeck PH, Walton ME (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 11(4):168–176PubMedCrossRefGoogle Scholar
  98. Ryterska A, Jahanshahi M, Osman M (2013) What are people with Parkinson’s disease really impaired on when it comes to making decisions? A meta-analysis of the evidence. Neurosci Biobehav Rev 37(10 Pt 2):2836–2846PubMedCrossRefGoogle Scholar
  99. Sachdev PS, Malhi GS (2005) Obsessive-compulsive behaviour: a disorder of decision-making. Aust N Z J Psychiatry 39(9):757–763PubMedGoogle Scholar
  100. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27PubMedGoogle Scholar
  101. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599PubMedCrossRefGoogle Scholar
  102. Seymour B, Singer T, Dolan R (2007) The neurobiology of punishment. Nat Rev Neurosci 8(4):300–311PubMedCrossRefGoogle Scholar
  103. Shiels K, Hawk LW Jr, Reynolds B et al (2009) Effects of methylphenidate on discounting of delayed rewards in attention deficit/hyperactivity disorder. Exp Clin Psychopharmacol 17(5):291–301PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shohamy D, Myers CE, Grossman S et al (2004a) Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. Brain 127(Pt 4):851–859PubMedCrossRefGoogle Scholar
  105. Shohamy D, Myers CE, Onlaor S et al (2004b) Role of the basal ganglia in category learning: how do patients with Parkinson’s disease learn? Behav Neurosci 118(4):676–686PubMedCrossRefGoogle Scholar
  106. Shumake J, Gonzalez-Lima F (2003) Brain systems underlying susceptibility to helplessness and depression. Behav Cogn Neurosci Rev 2(3):198–221PubMedCrossRefGoogle Scholar
  107. Singer HS, Szymanski S, Giuliano J et al (2002) Elevated intrasynaptic dopamine release in Tourette’s syndrome measured by PET. Am J Psychiatry 159(8):1329–1336PubMedCrossRefGoogle Scholar
  108. Sokol-Hessner P, Camerer CF, Phelps EA (2012) Emotion regulation reduces loss aversion and decreases amygdala responses to losses. Soc Cogn Affect Neurosci 8(3):341–350PubMedPubMedCentralCrossRefGoogle Scholar
  109. Stern ER, Welsh RC, Gonzalez R et al (2013) Subjective uncertainty and limbic hyperactivation in obsessive-compulsive disorder. Hum Brain Mapp 34(8):1956–1970PubMedCrossRefGoogle Scholar
  110. Stopper CM, Floresco SB (2015) Dopaminergic circuitry and risk/reward decision making: implications for schizophrenia. Schizophr Bull 41(1):9–14PubMedCrossRefGoogle Scholar
  111. Sugrue LP, Corrado GS, Newsome WT (2005) Choosing the greater of two goods: neural currencies for valuation and decision making. Nat Rev Neurosci 6(5):363–375PubMedCrossRefGoogle Scholar
  112. Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307(5715):1642–1645PubMedCrossRefGoogle Scholar
  113. Tobler PN, O’Doherty JP, Dolan RJ, Schultz W (2007) Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. J Neurophysiol 97(2):1621–1632PubMedCrossRefGoogle Scholar
  114. Treadway MT, Buckholtz JW, Schwartzman AN et al (2009) Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One 4(8):e6598PubMedPubMedCentralCrossRefGoogle Scholar
  115. Treadway MT, Buckholtz JW, Cowan RL et al (2012a) Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci 32(18):6170–6176PubMedPubMedCentralCrossRefGoogle Scholar
  116. Treadway MT, Bossaller NA, Shelton RC et al (2012b) Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J Abnorm Psychol 121(3):553–558PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398(6729):704–708PubMedCrossRefGoogle Scholar
  118. Tremblay L, Schultz W (2000) Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J Neurophysiol 83(4):1877–1885PubMedGoogle Scholar
  119. Vanni-Mercier G, Mauguière F, Isnard J et al (2009) The hippocampus codes the uncertainty of cue-outcome associations: an intracranial electrophysiological study in humans. J Neurosci 29(16):5287–5294PubMedCrossRefGoogle Scholar
  120. Walton ME, Kennerley SW, Bannerman DM et al (2006) Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw 19(8):1302–1314PubMedPubMedCentralCrossRefGoogle Scholar
  121. Waltz JA, Frank MJ, Robinson BM et al (2007) Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry 62(7):756–764PubMedPubMedCentralCrossRefGoogle Scholar
  122. Waltz JA, Frank MJ, Wiecki TV et al (2011) Altered probabilistic learning and response biases in schizophrenia: behavioral evidence and neurocomputational modeling. Neuropsychology 25(1):86–97PubMedPubMedCentralCrossRefGoogle Scholar
  123. Watkins LH, Sahakian BJ, Robertson MM et al (2005) Executive function in Tourette’s syndrome and obsessive-compulsive disorder. Psychol Med 35(4):571–582PubMedCrossRefGoogle Scholar
  124. Whitton AE, Treadway MT, Pizzagalli DA (2015) Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry 28(1):7–12PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wilbertz G, van Elst LT, Delgado MR, Maier S et al (2012) Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. Neuroimage 60(1):353–361PubMedCrossRefGoogle Scholar
  126. Wilkinson L, Lagnado DA, Quallo M et al (2008) The effect of feedback on non-motor probabilistic classification learning in Parkinson’s disease. Neuropsychologia 46(11):2683–2695PubMedCrossRefGoogle Scholar
  127. Witt K, Nuhsman A, Deuschl G et al (2002) Dissociation of habit-learning in Parkinson’s and cerebellar disease. J Cogn Neurosci 14(3):493–499PubMedCrossRefGoogle Scholar
  128. Witt K, Daniels C, Daniel V et al (2006) Patients with Parkinson’s disease learn to control complex systems-an indication for intact implicit cognitive skill learning. Neuropsychologia 44(12):2445–2451PubMedCrossRefGoogle Scholar
  129. Wong DF, Brasić JR, Singer HS et al (2008) Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET. Neuropsychopharmacology 33(6):1239–1251PubMedCrossRefGoogle Scholar
  130. Worbe Y, Palminteri S, Hartmann A et al (2011) Reinforcement learning and Gilles de la Tourette syndrome: dissociation of clinical phenotypes and pharmacological treatments. Arch Gen Psychiatry 68(12):1257–1266PubMedCrossRefGoogle Scholar
  131. Xue G, Lu Z, Levin IP et al (2009) Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cereb Cortex 19(5):1019–1027PubMedCrossRefGoogle Scholar
  132. Yang XH, Huang J, Zhu CY et al (2014) Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res 220(3):874–882PubMedCrossRefGoogle Scholar
  133. Yoon DY, Gause CD, Leckman JF et al (2007) Frontal dopaminergic abnormality in Tourette syndrome: a postmortem analysis. J Neurol Sci 255(1-2):50–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of NeurologyYale School of MedicineNew HavenUSA
  2. 2.Department of Psychological and Brain SciencesCenter for Memory and Brain, Boston UniversityBostonUSA

Personalised recommendations