Advertisement

The Subthalamic Nucleus and Reward-Related Processes

  • Christelle BaunezEmail author
Chapter
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)

Abstract

Considered for a long time a simple relay structure on the so-called indirect pathway of the motor loop within the basal ganglia, the subthalamic nucleus is now considered a critical node in the reward circuitry. This chapter discusses recent evidence for this role in both the animal and clinical literature. There is converging recent evidence to suggest that inactivating this structure could represent an interesting strategy for the treatment of certain forms of reward-related dysfunctions, including drug addiction.

Keywords

Subthalamic nucleus Reward Drug addiction 

Notes

Acknowledgment

The author’s work reported in this chapter has been supported by grants from the Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, the Agence Nationale pour la Recherche (ANR-09-MNPS-028-01 and ANR 2010-NEUR-005-01 in the framework of the ERA-Net NEURON and projet “investissement d’avenir” A*MIDEX with reference ANR-11-IDEX-0001-02), the IREB (Institut de Recherches Scientifiques sur les Boissons), and Fondation pour le Recherche Médicale (FRM, DPA20140629789).

References

  1. Absher HR, Vogt BA, Clark DG et al (2000) Hypersexuality and hemiballism due to subthalamic infarction. Neuropsychiatry Neuropsychol Behav Neurol 13(3):220–229PubMedGoogle Scholar
  2. Afsharpour S (1985a) Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. J Comp Neurol 236(1):1–13CrossRefPubMedGoogle Scholar
  3. Afsharpour S (1985b) Topographical projections of the cerebral cortex to the subthalamic nucleus. J Comp Neurol 236(1):14–28CrossRefPubMedGoogle Scholar
  4. Agid Y, Arnulf I, Bejjani P, Bloch F, Bonnet AM, Damier P, Dubois B, François C, Houeto JL, Iacono D, Karachi C, Mesnage V, Messouak O, Vidailhet M, Welter ML, Yelnik J (2003) Parkinson’s disease is a neuropsychiatric disorder. Adv Neurol 91:365–370PubMedGoogle Scholar
  5. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300CrossRefPubMedGoogle Scholar
  6. Akakin A, Yilmaz BY, Urgun K et al (2014) Hypersexuality after bilateral deep brain stimulation of the subthalamic nucleus for Parkinson’s disease. Neurol India 62:233–234CrossRefPubMedGoogle Scholar
  7. Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21(12):3447–3452CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bannier S, Montaurier C, Derost PP et al (2009) Overweight after deep brain stimulation of the subthalamic nucleus in Parkinson disease: long term follow-up. J Neurol Neurosurg Psychiatry 80:484–488CrossRefPubMedGoogle Scholar
  9. Baracz SJ, Cornish JL (2013) Oxytocin modulates dopamine-mediated reward in the rat subthalamic nucleus. Horm Behav 63:370–375CrossRefPubMedGoogle Scholar
  10. Baracz SJ, Rourke PI, Pardey MC et al (2012) Oxytocin directly administered into the nucleus accumbens core or subthalamic nucleus attenuates methamphetamine-induced conditioned place preference. Behav Brain Res 228:185–193CrossRefPubMedGoogle Scholar
  11. Barichella M, Marczewska AM, Mariani C et al (2003) Body weight gain rate in patients with Parkinson’s Disease and deep brain stimulation. Mov Disord 18:1337–1340CrossRefPubMedGoogle Scholar
  12. Barutca S, Turgut M, Meydan N, Ozsunar Y (2003) Subthalamic nucleus tumor causing hyperphagia—case report. Neurol Med Chir (Tokyo) 43(9):457–460CrossRefGoogle Scholar
  13. Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9(10):2086–2099CrossRefPubMedGoogle Scholar
  14. Baunez C, Amalric M, Robbins TW (2002) Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J Neurosci 22:562–568PubMedGoogle Scholar
  15. Baunez C, Dias C, Cador M, Amalric M (2005) The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nat Neurosci 8:484–489PubMedGoogle Scholar
  16. Benazzouz A, Gross C, Feger J et al (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389CrossRefPubMedGoogle Scholar
  17. Benazzouz A, Boraud T, Féger J et al (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord 11(6):627–632CrossRefPubMedGoogle Scholar
  18. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438CrossRefPubMedGoogle Scholar
  19. Beurrier C, Bezard E, Bioulac B, Gross C (1997) Subthalamic stimulation elicits hemiballismus in normal monkey. Neuroreport 8(7):1625–1629CrossRefPubMedGoogle Scholar
  20. Bevan MD, Francis CM, Bolam JP (1995) The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals. J Comp Neurol 361(3):491–511CrossRefPubMedGoogle Scholar
  21. Bezzina G, Boon FS, Hampson CL et al (2008) Effect of quinolinic acid-induced lesions of the subthalamic nucleus on performance on a progressive-ratio schedule of reinforcement: a quantitative analysis. Behav Brain Res 195(2):223–230CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bowman EM, Brown VJ (1998) Effects of excitotoxic lesions of the rat ventral striatum on the perception of reward cost. Exp Brain Res 123(4):439–448CrossRefPubMedGoogle Scholar
  23. Breysse E, Pelloux Y, Baunez C (2015) The good and bad differentially encoded within the subthalamic nucleus in rats. eNeuro 15:2(5)Google Scholar
  24. Carson DS, Hunt GE, Guastella AJ et al (2010) Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus. Addict Biol 15:448–463CrossRefPubMedGoogle Scholar
  25. Chabardes S, Polosan M, Krack P et al (2013) Deep brain stimulation for obsessive-compulsive disorder: subthalamic nucleus target. World Neurosurg 80(3-4):S31.e31–8. doi: 10.1016/j.wneu.2012.03.010 Google Scholar
  26. Coizet V, Graham JH, Moss J et al (2009) Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J Neurosci 29(17):5701–5709CrossRefPubMedPubMedCentralGoogle Scholar
  27. Darbaky Y, Baunez C, Arecchi P et al (2005) Reward related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport 16(11):1241–1244CrossRefPubMedGoogle Scholar
  28. Degos B, Deniau JM, Le Cam J et al (2008) Evidence for a direct subthalamo-cortical loop circuit in the rat. Eur J Neurosci 27(10):2599–2610CrossRefPubMedGoogle Scholar
  29. Dudek M, Abo-Ramadan U, Hermann D, Brown M, Canals S, Sommer WH, Hyytia P (2015) Brain activation induced by voluntary alcohol and saccharin drinking in rats assessed with manganese-enhanced magnetic resonance imaging. Addict Biol 20(6):1012–1021. doi: 10.1111/adb.12179 CrossRefPubMedGoogle Scholar
  30. Espinosa-Parrilla JF, Baunez C, Apicella P (2015) Modulation of neuronal activity by reward identity in the monkey subthalamic nucleus. Eur J Neurosci 42(1):1705–1717CrossRefPubMedGoogle Scholar
  31. Eusebio A, Witjas T, Cohen J, Fluchère F, Jouve E, Régis J, Azulay JP (2013) Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry 84(8):868–874CrossRefPubMedGoogle Scholar
  32. Groenewegen HJ, Berendse HW (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 294(4):607–622CrossRefPubMedGoogle Scholar
  33. Groenewegen HJ, Berendse HW, Wolters JG, Lohman AH (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–116CrossRefPubMedGoogle Scholar
  34. Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C (2009) Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol 89(1):79–123CrossRefPubMedGoogle Scholar
  35. Hachem-Delaunay S, Fournier ML, Cohen C, Bonneau N, Cador M, Baunez C, Le Moine C (2015) Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit. Neurobiol Dis 80:54–62CrossRefPubMedGoogle Scholar
  36. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127(1):4–20CrossRefPubMedGoogle Scholar
  37. Hammond C, Yelnik J (1983) Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 8(4):781–790CrossRefPubMedGoogle Scholar
  38. Hammond C, Rouzaire-Dubois B, Feger J et al (1983) Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. Neuroscience 9(1):41–52CrossRefPubMedGoogle Scholar
  39. Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134(3483):943–944CrossRefPubMedGoogle Scholar
  41. Inase M, Tokuno H, Nambu A et al (1999) Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833(2):191–201CrossRefPubMedGoogle Scholar
  42. Jackson A, Crossman AR (1981) Subthalamic nucleus efferent projection to the cerebral cortex. Neuroscience 6(11):2367–2377CrossRefPubMedGoogle Scholar
  43. Joel D, Weiner I (1997) The connections of the primate subthalamic nucleus: indirect pathways and the open interconnected scheme of basal ganglia thalamocortical circuitry. Brain Res Rev 23(1-2):62–78CrossRefPubMedGoogle Scholar
  44. Kantak KM, Yager LM, Brisotti MF (2013) Impact of medial orbital cortex and medial subthalamic nucleus inactivation, individually and together, on the maintenance of cocaine self-administration behavior in rats. Behav Brain Res 238:1–9CrossRefPubMedGoogle Scholar
  45. Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260(3):435–452CrossRefPubMedGoogle Scholar
  46. Kita T, Osten P, Kita H (2014) Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 522(18):4043–4056CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kitai ST, Deniau JM (1981) Cortical inputs to the subthalamus: intracellular analysis. Brain Res 214(2):411–415CrossRefPubMedGoogle Scholar
  48. Knobel D, Aybek S, Pollo C et al (2008) Rapid resolution of dopamine dysregulation syndrome (DDS) after subthalamic DBS for Parkinson disease (PD): a case report. Cogn Behav Neurol 21:187–189CrossRefPubMedGoogle Scholar
  49. Künzle H, Akert K (1977) Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 173(1):147–164CrossRefPubMedGoogle Scholar
  50. Lardeux S, Baunez C (2008) Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology 33:634–642CrossRefPubMedGoogle Scholar
  51. Lardeux S, Pernaud R, Paleressompoulle D, Baunez C (2009) Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. J Neurophysiol 102:2526–2537CrossRefPubMedGoogle Scholar
  52. Lardeux S, Paleressompoulle D, Pernaud R et al (2013) Different populations of subthalamic neurons encode cocaine versus sucrose reward and predict future error. J Neurophysiol 110(7):1497–1510CrossRefPubMedGoogle Scholar
  53. Lawrence AD, Evans AH, Lees AJ (2003) Compulsive use of dopamine replacement therapy in Parkinson’s disease: reward systems gone awry? Lancet Neurol 2(10):595–604CrossRefPubMedGoogle Scholar
  54. Le Jeune F, Drapier D, Bourguignon A et al (2009) Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 73(21):1746–1751CrossRefPubMedGoogle Scholar
  55. Levesque J, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Mov Disord 20(5):574–584CrossRefPubMedGoogle Scholar
  56. Lhommee E, Klinger H, Thobois S et al (2012) Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135:1463–1477CrossRefPubMedGoogle Scholar
  57. Lim SY, O’Sullivan SS, Kotschet K et al (2009) Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci 16:1148–1152CrossRefPubMedGoogle Scholar
  58. Limousin P, Pollak P, Benazzouz A, Hoffmann D et al (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95CrossRefPubMedGoogle Scholar
  59. Macia F, Perlemoine C, Coman I, Guehl D, Burbaud P, Cuny E et al (2004) Parkinson’s disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord 19:206–212CrossRefPubMedGoogle Scholar
  60. Mallet L, Polosan M, Jaafari N et al (2008) Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359:2121–2134CrossRefPubMedGoogle Scholar
  61. Martinez-Fernandez R, Pelissier P, Quesada JL et al (2016) Postoperative apathy can neutralise benefits in quality of life after subthalamic stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry 87(3):311–318. doi: 10.1136/jnnp-2014-310189 CrossRefPubMedGoogle Scholar
  62. Matsumura M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67(6):1615–1632PubMedGoogle Scholar
  63. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2-3):69–97CrossRefPubMedGoogle Scholar
  64. Monakow KH, Akert K, Kunzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33(3-4):395–403CrossRefPubMedGoogle Scholar
  65. Montaurier C, Morio B, Bannier S et al (2007) Mechanisms of body weight gain in patients with Parkinson’s disease after subthalamic stimulation. Brain 130:1808–1818CrossRefPubMedGoogle Scholar
  66. Morris LS, Kundu P, Baek K et al (2015) Jumping the gun: mapping neural correlates of waiting impulsivity and relevance across alcohol misuse. Biol Psychiatry 79(6):499–507CrossRefPubMedGoogle Scholar
  67. Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16(8):2671–2683PubMedGoogle Scholar
  68. Nauta HJ, Cole M (1978) Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J Comp Neurol 180(1):1–16CrossRefPubMedGoogle Scholar
  69. Novakova L, Ruzicka E, Jech R, Serranova T, Dusek P, Urgosik D (2007) Increase in body weight is a non-motor side effect of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neuroendocrinol Lett 28:21–25PubMedGoogle Scholar
  70. Novakova L, Haluzik M, Jech R et al (2011) Hormonal regulators of food intake and weight gain in Parkinson’s disease after subthalamic nucleus stimulation. Neuro Endocrinol Lett 32(4):437–441PubMedGoogle Scholar
  71. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 20(1):128–154CrossRefPubMedGoogle Scholar
  72. Pelloux Y, Baunez C (2013) Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr Opin Neurobiol 23(4):713–720CrossRefPubMedGoogle Scholar
  73. Pelloux Y, Meffre J, Giorla E, Baunez C (2014) The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Front Behav Neurosci 8:414CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pelloux Y, Degoulet M, Tiran-Cappello A, Cohen C, Lardeux S, George O, Koob GF, Ahmed SH and Baunez C, Turning off the subthalamic nucleus prevents escalation of cocaine intake and restores controlled use after escalation. In preparation.Google Scholar
  75. Pollak P, Benabid AL, Gervason CL et al (1993) Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor. Adv Neurol 60:408–413PubMedGoogle Scholar
  76. Pratt WE, Choi E, Guy EG (2012) An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat. Behav Brain Res 230(2):365–373CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ricardo JA (1980) Efferent connections of the subthalamic region in the rat in the subthalamic nucleus of Luys. Brain Res 202(2):257–271CrossRefPubMedGoogle Scholar
  78. Rieu I, Derost P, Ulla M et al (2011) Body weight gain and deep brain stimulation. J Neurol Sci 310(1-2):267–270CrossRefPubMedGoogle Scholar
  79. Rouaud T, Lardeux S, Panayotis N et al (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci U S A 107:1196–1200CrossRefPubMedGoogle Scholar
  80. Růžička F, Jech R, Nováková L et al (2012) Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson’s disease. PLoS One 7(5):e38020CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sauleau P, Eusebio A, Vandenberghe W et al (2009) Deep brain stimulation modulates effects of motivation in Parkinson’s disease. Neuroreport 20(6):622–626CrossRefPubMedGoogle Scholar
  82. Serranová T, Sieger T, Dušek P et al (2013) Sex, food and threat: startling changes after subthalamic stimulation in Parkinson’s disease. Brain Stimul 6(5):740–745CrossRefPubMedGoogle Scholar
  83. Smith Y, Hazrati LN, Parent A (1990) Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 294(2):306–323CrossRefPubMedGoogle Scholar
  84. Strowd RE, Cartwright MS, Passmore LV et al (2010) Weight change following deep brain stimulation for movement disorders. J Neurol 257:1293–1297CrossRefPubMedGoogle Scholar
  85. Takada M, Tokuno H, Hamada M et al (2001) Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 14(10):1633–1650CrossRefPubMedGoogle Scholar
  86. Teagarden MA, Rebec GV (2007) Subthalamic and striatal neurons concurrently process motor, limbic, and associative information in rats performing an operant task. J Neurophysiol 97(3):2042–2058CrossRefPubMedGoogle Scholar
  87. Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398(6729):704–708CrossRefPubMedGoogle Scholar
  88. Trillet M, Vighetto A, Croisile B et al (1995) Hemiballismus with logorrhea and thymo-affective disinhibition caused by hematoma of the left subthalamic nucleus. Rev Neurol (Paris) 151(6-7):416–419Google Scholar
  89. Tuite PJ, Maxwell RE, Ikramuddin S et al (2005) Weight and body mass index in Parkinson’s disease patients after deep brain stimulation surgery. Parkinsonism Relat Disord 11:247–252CrossRefPubMedGoogle Scholar
  90. Uslaner JM, Yang P, Robinson TE (2005) Subthalamic nucleus lesions enhance the psychomotor-activating, incentive motivational, and neurobiological effects of cocaine. J Neurosci 25(37):8407–8415CrossRefPubMedGoogle Scholar
  91. Uslaner JM, Dell Orco JM, Pevzner A, Robinson TE (2008) The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: facilitation of incentive salience attribution? Neuropsychopharmacology 33:2352–2361CrossRefPubMedGoogle Scholar
  92. Vaccari C, Lolait SJ, Ostrowski NL (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139(12):5015–5033PubMedGoogle Scholar
  93. Van Der Kooy D, Hattori T (1980) Single subthalamic nucleus neurons project to both the globus pallidus and substantia nigra in rat. J Comp Neurol 192(4):751–768CrossRefGoogle Scholar
  94. Visser-Vandewalle V, Van der Linden C, Temel Y et al (2005) Long-term effects of bilateral subthalamic nucleus stimulation in advanced Parkinson disease: a four year follow-up study. Parkinsonism Relat Disord 11:157–165CrossRefPubMedGoogle Scholar
  95. Wade CL, Hernandez DO, Breysse E et al (Submitted) Preclinical evidence for therapeutic efficacy of high-frequency stimulation of the subthalamic nucleus for heroin dependenceGoogle Scholar
  96. Winstanley CA, Baunez C, Theobald DE, Robbins TW (2005) Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur J Neurosci 21(11):3107–3116CrossRefPubMedGoogle Scholar
  97. Witjas T, Baunez C, Henry JM et al (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20:1052–1055CrossRefPubMedGoogle Scholar
  98. Wolf ME (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv 2(3):146–157CrossRefPubMedGoogle Scholar
  99. Zenon A, Duclos Y, Carron R et al (2016) The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making. Brain 139(Pt 6):1830–1843Google Scholar
  100. Zijlstra F, Veltman DJ, Booij J, van den Brink W, Franken IH (2009) Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol Depend 99(1-3):183–192CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut de Neurosciences de la TimoneUMR7289 CNRS & Aix-Marseille UniversitéMarseille cedex 05France

Personalised recommendations