Advertisement

The Basal Ganglia and Language: A Tale of Two Loops

  • Anastasia BohsaliEmail author
  • Bruce Crosson
Chapter
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)

Abstract

This chapter explores current evidence supporting basal ganglia’s involvement in language processing. We begin with a review of the anatomy of the basal ganglia loops and discuss two prefrontal cortex loops potentially supporting language functions. Specifically, we consider the pre-supplementary motor area (pre-SMA) loop, Broca’s area loop, as well as white matter connectivity between these cortical areas. Considering current evidence, we propose that the pre-SMA loop may be involved in internally guided selection of lexical items, while Broca’s area–basal ganglia circuitry may support selection of appropriate phonological and articulatory representations of these items. White matter connections between Broca’s area and pre-SMA may enable information transfer between these two prefrontal cortex–basal ganglia loops supporting language functions.

Keywords

Basal ganglia loops Language Broca’s area Pre-supplementary motor area White matter Internally guided lexical selection 

References

  1. Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673PubMedCrossRefGoogle Scholar
  2. Alario FX, Chainay H, Lehericy S, Cohen L (2006) The role of the supplementary motor area (SMA) in word production. Brain Res 1076:129–143PubMedCrossRefGoogle Scholar
  3. Alexander MP (1997) Aphasia: clinical and anatomic aspects. Behavioral neurology and neuropsychology. McGraw-Hill, New YorkGoogle Scholar
  4. Alexander MP (2002) Disorders of language after frontal lobe injury: evidence for the neural mechanisms of. Principles of frontal lobe function, 159Google Scholar
  5. Alexander MP (2003) Aphasia: clinical and anatomic issues. In: Feinberg TE, Farah MJ (eds) Behavioral neurology & neuropsychology, 2nd edn. McGraw-Hill, New York, pp 147–164Google Scholar
  6. Alexander MP, LoVerme SR (1980) Aphasia after left hemispheric hemorrhage. Neurology 30:1193–1202PubMedCrossRefGoogle Scholar
  7. Alexander MP, Schmitt MA (1980) The aphasia syndrome of stroke in the left anterior cerebral artery territory. Arch Neurol 37:97–100PubMedCrossRefGoogle Scholar
  8. Alexander CE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  9. Alexander MP, Naeser MA, Palumbo CL (1987) Correlations of subcortical CT lesion sites and aphasia profiles. Brain 110:961–991PubMedCrossRefGoogle Scholar
  10. Allan CM, Turner JW, Gadea-Ciria M (1966) Investigations into speech disturbances following stereotaxic surgery for Parkinsonism. Br J Disord Commun 1(1):55–59PubMedCrossRefGoogle Scholar
  11. Amunts K, Weiss PH, Mohlberg H et al (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56PubMedCrossRefGoogle Scholar
  12. Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT‐MRI data. Magn Reson Med 44:625–632PubMedCrossRefGoogle Scholar
  13. Basso A, Sala SD, Farabola M (1987) Aphasia arising from purely deep lesions. Cortex 23:29–44PubMedCrossRefGoogle Scholar
  14. Binder JR, Frost JA, Hammeke TA et al (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362PubMedGoogle Scholar
  15. Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25(1):151–188PubMedCrossRefGoogle Scholar
  16. Booth JR, Wood L, Lu D, Houk JC, Bitan T (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133:136–144PubMedCrossRefGoogle Scholar
  17. Bormann T, Wallesch C-W, Blanken G (2008) Verbal planning in a case of ‘dynamic aphasia’: an impairment at the level of macroplanning. Neurocase 14:431–450PubMedCrossRefGoogle Scholar
  18. Broadbent WH (1872) On the cerebral mechanisms of speech and thought. Proceedings of the Royal Medicinal and Chirurgical Society of London. Anonymous, London, p 25–29Google Scholar
  19. Broca P (1865) On the seat of the faculty of articulate language. Bull Soc Anthropol Paris 6:337–393Google Scholar
  20. Brunner RJ, Kornhuber HH, Seemuller E et al (1982) Basal ganglia participation in language pathology. Brain Lang 16:281–299PubMedCrossRefGoogle Scholar
  21. Buckingham HW, Hollien H (1978) A neural model for language and speech. J Phon 6:283–297Google Scholar
  22. Bucy PC (1942) The neural mechanisms of athetosis and tremor. J Neuropath Exp Neurol 1:224–231CrossRefGoogle Scholar
  23. Cappa SF, Cavallotti G, Guidotti M et al (1983) Subcortical aphasia: two clinical-CT scan correlation studies. Cortex 19:227–241PubMedCrossRefGoogle Scholar
  24. Catani M, De Schotten MT (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132PubMedCrossRefGoogle Scholar
  25. Catani M, Jones DK (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16PubMedCrossRefGoogle Scholar
  26. Catani M, Howard RJ, Pajevic S et al (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMedCrossRefGoogle Scholar
  27. Catani M, Dell’Acqua F, Vergani F et al (2012) Short frontal lobe connections of the human brain. Cortex 48:273–291PubMedCrossRefGoogle Scholar
  28. Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, Thompson CK, Thiebaut de Schotten M, Dell’Acqua F, Weintraub S, Rogalski E (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136(8):2619–2628Google Scholar
  29. Chung GH, Han YM, Jeong SH et al (2005) Functional heterogeneity of the supplementary motor area. Am J Neuroradiol 26:1819–1823PubMedGoogle Scholar
  30. Cooper IS (1959) Chemopallidectomy and chemothalamectomy for parkinsonism and dystonia. Proc R Soc Med 52(1):47PubMedPubMedCentralGoogle Scholar
  31. Copland DA (2003) Basal ganglia and semantic engagement. J Int Neuropsychol Soc 9:1041–1052PubMedCrossRefGoogle Scholar
  32. Copland DA, Chenery HJ, Murdoch BE (2000a) Persistent deficits in complex language function following dominant nonthalamic subcortical lesions. J Med Speech Lang Pathol 8:1–15Google Scholar
  33. Copland DA, Chenery HJ, Murdoch BE (2000b) Processing lexical ambiguities in word triplets. Neuropsychology 14:370–390CrossRefGoogle Scholar
  34. Costello AL, Warrington EK (1989) Dynamic aphasia: the selective impairment of verbal planning. Cortex 25:103–114PubMedCrossRefGoogle Scholar
  35. Cox DE, Heilman KM (2011) Dynamic-intentional thalamic aphasia: a failure of lexical-semantic self-activation. Neurocase 17:313–317PubMedCrossRefGoogle Scholar
  36. Crescentini C, Lunardelli A, Mussoni A et al (2008) A left basal ganglia case of dynamic aphasia or impairment of extra-language cognitive processes? Neurocase 14:184–203PubMedCrossRefGoogle Scholar
  37. Crosson B (1985) Subcortical functions in language: a working model. Brain Lang 25(2):257–292PubMedCrossRefGoogle Scholar
  38. Crosson B (1992) Subcortical functions in language and memory. Guilford, New YorkGoogle Scholar
  39. Crosson B (2013) Thalamic mechanisms in language: a reconsideration based on recent findings and concepts. Brain Lang 126:73–88PubMedCrossRefGoogle Scholar
  40. Crosson B, Sadek JR, Maron L et al (2001) Relative shift in activity from medial to lateral frontal cortex during internally versus externally guided word generation. J Cogn Neurosci 13(2):272–283PubMedCrossRefGoogle Scholar
  41. Crosson B, Bohsali A, Raymer AM (2003) Transcortical motor aphasia. In: Raymer AM, Gonzalez Rothi LJ (eds) Oxford handbook of aphasia. Oxford University Press, New YorkGoogle Scholar
  42. Crosson, B, Ford, A, Raymer, AM (in press) Transcortical motor aphasia. In Raymer AM & Gonzalez Rothi LJ, Handbook of aphasia and language disorders. Oxford University Press, New YorkGoogle Scholar
  43. Crosson B, McGregor K, Gopinath KS et al (2007) Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol Rev 17(2):157–177PubMedPubMedCentralCrossRefGoogle Scholar
  44. Croxson PL, Johansen-Berg H, Behrens TE et al (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25:8854–8866PubMedCrossRefGoogle Scholar
  45. Damasio AR, Anderson SW, Tranel D (2012) The frontal lobes. In: Heilman KM, Valenstein E (eds) Clinical neuropsychology, 5th edn. Oxford University Press, New York, pp 296–348Google Scholar
  46. Damasio AR, Damasio H, Rizzo M et al (1982) Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol 39:15–20PubMedCrossRefGoogle Scholar
  47. De Schotten MT, Dell’Acqua F, Valabregue R et al (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96CrossRefGoogle Scholar
  48. Desmond JE, Gabrieli JD, Glover GH (1998) Dissociation of frontal and cerebellar activity in a cognitive task: evidence for a distinction between selection and search. Neuroimage 7:368–376PubMedCrossRefGoogle Scholar
  49. Devlin JT, Raley J, Tunbridge E et al (2003) Functional asymmetry for auditory processing in human primary auditory cortex. J Neurosci 23:11516–11522PubMedGoogle Scholar
  50. Draganski B, Kherif F, Kloppel S et al (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28:7143–7152PubMedCrossRefGoogle Scholar
  51. Eickhoff SB, Heim S, Zilles K, Amunts K (2009) A systems perspective on the effective connectivity of overt speech production. Philos Trans A Math Phys Eng Sci 367:2399–2421PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fisher CM (1979) Capsular infarcts: the underlying vascular lesions. Arch Neurol 36:65–73PubMedCrossRefGoogle Scholar
  53. Ford A, McGregor KM, Case K et al (2010) Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage 52:1230–1237PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ford A, Triplett W, Sudhyadhom A et al (2013) Broca's area and its striatal and thalamic connections: a diffusion-MRI tractography study. Front Neuroanat 7(8):1Google Scholar
  55. Freedman M, Alexander MP, Naeser MA (1984) Anatomic basis of transcortical motor aphasia. Neurology 34:409–417PubMedCrossRefGoogle Scholar
  56. Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6:78–84PubMedCrossRefGoogle Scholar
  57. Friederici AD (2003) Phonological processing in language production: time course of brain activity. Neuroreport 14(16):2031–2033PubMedCrossRefGoogle Scholar
  58. Friederici AD, Kotz SA, Werheid K (2003) Syntactic comprehension in Parkinson’s disease: investigating early automatic and late integrational processes using event-related brain potentials. Neuropsychology 17:133–142PubMedCrossRefGoogle Scholar
  59. Fromm D, Holland AL, Swindell CS et al (1985) Various consequences of subcortical stroke: prospective study of 16 consecutive cases. Arch Neurol 42:943–950PubMedCrossRefGoogle Scholar
  60. Gerfen C (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320PubMedCrossRefGoogle Scholar
  61. Gillingham FJ, Watson WS, Donaldson AA, Naughton JAL (1960) The surgical treatment of parkinsonism. Br Med J 2(5210):1395PubMedPubMedCentralCrossRefGoogle Scholar
  62. Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482PubMedCrossRefGoogle Scholar
  63. Gold M, Nadeau SE, Jacobs DH et al (1997) Adynamic aphasia: a transcortical motor aphasia with defective semantic strategy formation. Brain Lang 57:374–393PubMedCrossRefGoogle Scholar
  64. Goldberg G (1985) Supplementary motor area structure and function: review and hypotheses. Behav Brain Sci 8:567–616CrossRefGoogle Scholar
  65. Grossman M, Cooke A, DeVita C et al (2003) Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology 60:775–781PubMedCrossRefGoogle Scholar
  66. Haber SN, Kim KS, Mailly P et al (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376PubMedCrossRefGoogle Scholar
  67. Hagoort P (2003) How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. Neuroimage 20:S18–S29PubMedCrossRefGoogle Scholar
  68. Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9:416–423PubMedCrossRefGoogle Scholar
  69. Hagoort P, Hald L, Bastiaansen M et al (2004) Integration of word meaning and world knowledge in language comprehension. Science 304(5669):438–441PubMedCrossRefGoogle Scholar
  70. Hayashi MM, Ulatowska HK, Sasnuma S (1985) Subcortical aphasia with deep dyslexia: a case study of a Japanese patient. Brain Lang 25:293–313PubMedCrossRefGoogle Scholar
  71. Hillis AE, Wityk RJ, Barker PB et al (2002) Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 125:1094–1104PubMedCrossRefGoogle Scholar
  72. Inase M, Tokuno H, Nambu A (1999) Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833:191–201PubMedCrossRefGoogle Scholar
  73. Jonas S (1981) The supplementary motor region and speech emission. J Commun Disord 14:349–373PubMedCrossRefGoogle Scholar
  74. Kim JH, Lee JM, Jo HJ et al (2010) Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49:2375–2386PubMedCrossRefGoogle Scholar
  75. Kinoshita M, Shinohara H, Hori O et al (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy: clinical article. J Neurosurg 116:323–330PubMedCrossRefGoogle Scholar
  76. Kinoshita M et al (2015) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220(6):3399–3412PubMedCrossRefGoogle Scholar
  77. Knopman DS, Selnes OA, Niccum N et al (1984) Recovery of naming in aphasia: relationship to fluency, comprehension, and CT findings. Neurology 34:1461–1470PubMedCrossRefGoogle Scholar
  78. Lawes INC, Barrick TR, Murugam V et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79PubMedCrossRefGoogle Scholar
  79. Lee C, Grossman M, Morris J et al (2003) Attentional resource and processing speed limitations during sentence processing in Parkinson’s disease. Brain Lang 85:347–356PubMedCrossRefGoogle Scholar
  80. Leh SE, Ptito A, Chakravarty MM et al (2007) Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett 419:113–118PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lehericy S, Ducros M, Krainik A et al (2004a) 3-D diffusion tensor axonal tracking shows distinct SMA and Pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309Google Scholar
  82. Lehéricy S, Ducros M, De Moortele V et al (2004b) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529Google Scholar
  83. Lichtheim L (1885) On aphasia. Brain 7:433–484CrossRefGoogle Scholar
  84. Lieberman RR, Ellenberg M, Restum WH (1986) Aphasia associated with verified subcortical lesions: three case reports. Arch Phys Med Rehabil 67:410–414PubMedGoogle Scholar
  85. Luria AR (1970) Traumatic aphasia. Mouton, OxfordCrossRefGoogle Scholar
  86. Mandelli ML, Caverzasi E, Binney RJ et al (2014) Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci 34:9754–9767PubMedPubMedCentralCrossRefGoogle Scholar
  87. Marie P (1906) Revision de la question de l’aphasie: Que faut-il penser des aphasies sous-courticales (aphasies pures)? La Semaine Medicale 42, October 1906Google Scholar
  88. Mazzocchi F, Vignolo LA (1979) Localisation of lesions in aphasia: clinical-CT scan correlations in stroke patients. Cortex 15(4):627–653PubMedCrossRefGoogle Scholar
  89. Mega MS, Alexander MP (1994) Subcortical aphasia: the core profile of capsulostriatal infarction. Neurology 44:1824–1829PubMedCrossRefGoogle Scholar
  90. Metter EJ, Riege WH, Hanson WR et al (1983) Comparison of metabolic rates, language, and memory in subcortical aphasias. Brain Lang 19:33–47PubMedCrossRefGoogle Scholar
  91. Middleton FA, Strick PL (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex 12(9):926–935PubMedCrossRefGoogle Scholar
  92. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250PubMedCrossRefGoogle Scholar
  93. Milardi D, Gaeta M, Marino S et al (2014) Basal ganglia network by constrained spherical deconvolution: A possible cortico-pallido pathway. Mov Disord 30(3):342–349. doi: 10.1002/mds.25992 PubMedCrossRefGoogle Scholar
  94. Mink JW (1996) The basal ganglia. Prog Neurobiol 50:381–425PubMedCrossRefGoogle Scholar
  95. Mitchell IJ, Jackson A, Sambrook MA (1989) The role of the subthalamic nucleus in experimental chorea. Brain 112:1533–1548PubMedCrossRefGoogle Scholar
  96. Moro A, Tettamanti M, Perani D et al (2001) Syntax and the brain: disentangling grammar by selective anomalies. Neuroimage 13:110–118PubMedCrossRefGoogle Scholar
  97. Murdoch BE, Chenery HJ, Kennedy M (1989) Aphemia associated with bilateral striato-capsular lesions subsequent to cerebral anoxia. Brain Inj 3:41–49PubMedCrossRefGoogle Scholar
  98. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869PubMedCrossRefGoogle Scholar
  99. Nadeau SE, Crosson B (1997) Subcortical APHASIA. Brain Lang 58:355–402PubMedCrossRefGoogle Scholar
  100. Naeser MA, Alexander MP, Helm-Estabrooks N et al (1982) Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes. Arch Neurol 39:2–14PubMedCrossRefGoogle Scholar
  101. Nakano K (2000) Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev 22:S5–S16PubMedCrossRefGoogle Scholar
  102. Nambu A (2003) A new dynamic model of the cortico-basal ganglia loop. Prog Brain Res 143:461–466CrossRefGoogle Scholar
  103. Nambu A, Tokuno H, Hamada I et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300PubMedGoogle Scholar
  104. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117PubMedCrossRefGoogle Scholar
  105. Petersson KM, Forkstam C, Ingvar M (2004) Artificial syntactic violations activate Broca’s region. Cogn Sci 28(3):383–407Google Scholar
  106. Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310PubMedCrossRefGoogle Scholar
  107. Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353PubMedCrossRefGoogle Scholar
  108. Ramsburger G, Hillman RE (1985) Temporal speech characteristics associated with anterior left hemisphere cortical and subcortical lesions: a preliminary case report. Brain Lang 24:59–73CrossRefGoogle Scholar
  109. Robin DA, Schienberg S (1990) Subcortical lesions and aphasia. J Speech Hear Disord 55:90–100PubMedCrossRefGoogle Scholar
  110. Robinson G, Blair J, Cipolotti L (1998) Dynamic aphasia: an inability to select between competing verbal responses? Brain 121:77–89PubMedCrossRefGoogle Scholar
  111. Robinson G, Shallice T, Cipolotti L (2005) A failure of high level verbal response selection in progressive dynamic aphasia. Cogn Neuropsychol 22:661–694PubMedCrossRefGoogle Scholar
  112. Robinson G, Shallice T, Cipollotti L (2006) Dynamic aphasia in progressive supranuclear palsy: a deficit in generating a fluent sequence of novel thought. Neuropsychologia 44:1344–1360PubMedCrossRefGoogle Scholar
  113. Robles SG, Gatignol P, Capelle L et al (2005) The role of dominant striatum in language: a study using intraoperative electrical stimulations. J Neurol Neurosurg Psychiatry 76:940–946PubMedCentralCrossRefGoogle Scholar
  114. Sambin S, Teichmann M, de Diego Balaguer R et al (2012) The role of the striatum in sentence processing: disentangling syntax from working memory in Huntington’s disease. Neuropsychologia 50:2625–2635PubMedCrossRefGoogle Scholar
  115. Seghier ML, Price CJ (2010) Reading aloud boosts connectivity through the putamen. Cereb Cortex 20:570–582PubMedCrossRefGoogle Scholar
  116. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794PubMedGoogle Scholar
  117. Simonyan K, Herscovitch P, Horwitz B (2013) Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage 70:21–32PubMedCrossRefGoogle Scholar
  118. Svinnilson E, Torvik A, Lowe R et al (1960) Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. Acta Psychiatr Scand 35:358–377CrossRefGoogle Scholar
  119. Tanaka M, Singh Alvarado J, Murugan M et al (2016) Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences. Proc Natl Acad Sci U S A 113(12):E1720–E1727PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tanridag O, Kirshner HS (1985) Aphasia and agraphia in lesions of the posterior internal capsule and putamen. Neurology 35:1797–1801PubMedCrossRefGoogle Scholar
  121. Tettamanti M, Moro A, Messa C et al (2005) Basal ganglia and language: phonology modulates dopaminergic release. Neuroreport 16:397–401PubMedCrossRefGoogle Scholar
  122. Ullman MT (2001) A neurocognitive perspective on language: the declarative/procedural model. Nat Rev Neurosci 2:717–726PubMedCrossRefGoogle Scholar
  123. Ullman MT (2004) Contributions of memory circuits to language: the declarative/procedural model. Cognition 92:231–270PubMedCrossRefGoogle Scholar
  124. Ullman MT (2006) Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex 42:480–485PubMedCrossRefGoogle Scholar
  125. Ullman MT, Corkin S, Coppola M et al (1997) A neural dissociation within language: evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J Cogn Neurosci 9:266–276PubMedCrossRefGoogle Scholar
  126. Vigneau M, Beaucousin V, Herve PY et al (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30(4):1414–1432PubMedCrossRefGoogle Scholar
  127. Vosse T, Kempen G (2000) Syntactic structure assembly in human parsing: a computational model based on competitive inhibition and a lexicalist grammar. Cognition 75(2):105–143PubMedCrossRefGoogle Scholar
  128. Wallesch C-W (1985) Two syndromes of aphasia occurring with ischemic lesions involving the left basal ganglia. Brain Lang 25:357–361PubMedCrossRefGoogle Scholar
  129. Wallesch C-W, Pagagno C (1988) Subcortical aphasia. In: Rose FC, Whurr R, Wyke MA (eds) Aphasia. Whurr Publishers, London, pp 256–287Google Scholar
  130. Weiller C, Willmes K, Reiche W, Thron A, Isensee C, Buell U, Ringelstein EB (1993) The case of aphasia or neglect after striatocapsular infarction. Brain 116(6):1509–1525PubMedCrossRefGoogle Scholar
  131. Wiesendanger R, Wiesendanger M (1985) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (Macaca fascicularis). Exp Brain Res 59(1):91–104PubMedGoogle Scholar
  132. Wernicke C (1874) Der Aphasische Symptomencomplex. Cohn & Weigert, BreslauGoogle Scholar
  133. Wildgruber D, Ackermann H, Grodd W (2001) Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage 13:101–109PubMedCrossRefGoogle Scholar
  134. Wise RJ, Greene J, Buchel C et al (1999) Brain regions involved in articulation. Lancet 353:1057–1061PubMedCrossRefGoogle Scholar
  135. Yamadori A, Ohira T, Seriu M et al (1984) Transcortical sensory aphasia produced by lesions of the anterior basal ganglia area. Brain Lang 36:261–266Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.VA Rehabilitation Research and Development Brain Rehabilitation Research Center of ExcellenceGainesvilleUSA
  2. 2.Department of NeurologyUniversity of FloridaGainesvilleUSA
  3. 3.VA Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive RehabilitationDecaturUSA
  4. 4.Departments of Neurology and RadiologyEmory UniversityAtlantaUSA
  5. 5.Department of PsychologyGeorgia State UniversityAtlantaUSA
  6. 6.School of Health and Rehabilitation Sciences, University of QueenslandBrisbaneAustralia

Personalised recommendations