Skip to main content

The Basal Ganglia and Language: A Tale of Two Loops

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

This chapter explores current evidence supporting basal ganglia’s involvement in language processing. We begin with a review of the anatomy of the basal ganglia loops and discuss two prefrontal cortex loops potentially supporting language functions. Specifically, we consider the pre-supplementary motor area (pre-SMA) loop, Broca’s area loop, as well as white matter connectivity between these cortical areas. Considering current evidence, we propose that the pre-SMA loop may be involved in internally guided selection of lexical items, while Broca’s area–basal ganglia circuitry may support selection of appropriate phonological and articulatory representations of these items. White matter connections between Broca’s area and pre-SMA may enable information transfer between these two prefrontal cortex–basal ganglia loops supporting language functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673

    Article  PubMed  Google Scholar 

  • Alario FX, Chainay H, Lehericy S, Cohen L (2006) The role of the supplementary motor area (SMA) in word production. Brain Res 1076:129–143

    Article  PubMed  Google Scholar 

  • Alexander MP (1997) Aphasia: clinical and anatomic aspects. Behavioral neurology and neuropsychology. McGraw-Hill, New York

    Google Scholar 

  • Alexander MP (2002) Disorders of language after frontal lobe injury: evidence for the neural mechanisms of. Principles of frontal lobe function, 159

    Google Scholar 

  • Alexander MP (2003) Aphasia: clinical and anatomic issues. In: Feinberg TE, Farah MJ (eds) Behavioral neurology & neuropsychology, 2nd edn. McGraw-Hill, New York, pp 147–164

    Google Scholar 

  • Alexander MP, LoVerme SR (1980) Aphasia after left hemispheric hemorrhage. Neurology 30:1193–1202

    Article  PubMed  Google Scholar 

  • Alexander MP, Schmitt MA (1980) The aphasia syndrome of stroke in the left anterior cerebral artery territory. Arch Neurol 37:97–100

    Article  PubMed  Google Scholar 

  • Alexander CE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  Google Scholar 

  • Alexander MP, Naeser MA, Palumbo CL (1987) Correlations of subcortical CT lesion sites and aphasia profiles. Brain 110:961–991

    Article  PubMed  Google Scholar 

  • Allan CM, Turner JW, Gadea-Ciria M (1966) Investigations into speech disturbances following stereotaxic surgery for Parkinsonism. Br J Disord Commun 1(1):55–59

    Article  PubMed  Google Scholar 

  • Amunts K, Weiss PH, Mohlberg H et al (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56

    Article  PubMed  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT‐MRI data. Magn Reson Med 44:625–632

    Article  PubMed  Google Scholar 

  • Basso A, Sala SD, Farabola M (1987) Aphasia arising from purely deep lesions. Cortex 23:29–44

    Article  PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA et al (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362

    PubMed  Google Scholar 

  • Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25(1):151–188

    Article  PubMed  Google Scholar 

  • Booth JR, Wood L, Lu D, Houk JC, Bitan T (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133:136–144

    Article  PubMed  Google Scholar 

  • Bormann T, Wallesch C-W, Blanken G (2008) Verbal planning in a case of ‘dynamic aphasia’: an impairment at the level of macroplanning. Neurocase 14:431–450

    Article  PubMed  Google Scholar 

  • Broadbent WH (1872) On the cerebral mechanisms of speech and thought. Proceedings of the Royal Medicinal and Chirurgical Society of London. Anonymous, London, p 25–29

    Google Scholar 

  • Broca P (1865) On the seat of the faculty of articulate language. Bull Soc Anthropol Paris 6:337–393

    Google Scholar 

  • Brunner RJ, Kornhuber HH, Seemuller E et al (1982) Basal ganglia participation in language pathology. Brain Lang 16:281–299

    Article  PubMed  Google Scholar 

  • Buckingham HW, Hollien H (1978) A neural model for language and speech. J Phon 6:283–297

    Google Scholar 

  • Bucy PC (1942) The neural mechanisms of athetosis and tremor. J Neuropath Exp Neurol 1:224–231

    Article  Google Scholar 

  • Cappa SF, Cavallotti G, Guidotti M et al (1983) Subcortical aphasia: two clinical-CT scan correlation studies. Cortex 19:227–241

    Article  PubMed  Google Scholar 

  • Catani M, De Schotten MT (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  PubMed  Google Scholar 

  • Catani M, Jones DK (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  PubMed  Google Scholar 

  • Catani M, Howard RJ, Pajevic S et al (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    Article  PubMed  Google Scholar 

  • Catani M, Dell’Acqua F, Vergani F et al (2012) Short frontal lobe connections of the human brain. Cortex 48:273–291

    Article  PubMed  Google Scholar 

  • Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, Thompson CK, Thiebaut de Schotten M, Dell’Acqua F, Weintraub S, Rogalski E (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136(8):2619–2628

    Google Scholar 

  • Chung GH, Han YM, Jeong SH et al (2005) Functional heterogeneity of the supplementary motor area. Am J Neuroradiol 26:1819–1823

    PubMed  Google Scholar 

  • Cooper IS (1959) Chemopallidectomy and chemothalamectomy for parkinsonism and dystonia. Proc R Soc Med 52(1):47

    PubMed  PubMed Central  Google Scholar 

  • Copland DA (2003) Basal ganglia and semantic engagement. J Int Neuropsychol Soc 9:1041–1052

    Article  PubMed  Google Scholar 

  • Copland DA, Chenery HJ, Murdoch BE (2000a) Persistent deficits in complex language function following dominant nonthalamic subcortical lesions. J Med Speech Lang Pathol 8:1–15

    Google Scholar 

  • Copland DA, Chenery HJ, Murdoch BE (2000b) Processing lexical ambiguities in word triplets. Neuropsychology 14:370–390

    Article  Google Scholar 

  • Costello AL, Warrington EK (1989) Dynamic aphasia: the selective impairment of verbal planning. Cortex 25:103–114

    Article  PubMed  Google Scholar 

  • Cox DE, Heilman KM (2011) Dynamic-intentional thalamic aphasia: a failure of lexical-semantic self-activation. Neurocase 17:313–317

    Article  PubMed  Google Scholar 

  • Crescentini C, Lunardelli A, Mussoni A et al (2008) A left basal ganglia case of dynamic aphasia or impairment of extra-language cognitive processes? Neurocase 14:184–203

    Article  PubMed  Google Scholar 

  • Crosson B (1985) Subcortical functions in language: a working model. Brain Lang 25(2):257–292

    Article  PubMed  Google Scholar 

  • Crosson B (1992) Subcortical functions in language and memory. Guilford, New York

    Google Scholar 

  • Crosson B (2013) Thalamic mechanisms in language: a reconsideration based on recent findings and concepts. Brain Lang 126:73–88

    Article  PubMed  Google Scholar 

  • Crosson B, Sadek JR, Maron L et al (2001) Relative shift in activity from medial to lateral frontal cortex during internally versus externally guided word generation. J Cogn Neurosci 13(2):272–283

    Article  PubMed  Google Scholar 

  • Crosson B, Bohsali A, Raymer AM (2003) Transcortical motor aphasia. In: Raymer AM, Gonzalez Rothi LJ (eds) Oxford handbook of aphasia. Oxford University Press, New York

    Google Scholar 

  • Crosson, B, Ford, A, Raymer, AM (in press) Transcortical motor aphasia. In Raymer AM & Gonzalez Rothi LJ, Handbook of aphasia and language disorders. Oxford University Press, New York

    Google Scholar 

  • Crosson B, McGregor K, Gopinath KS et al (2007) Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol Rev 17(2):157–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Croxson PL, Johansen-Berg H, Behrens TE et al (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25:8854–8866

    Article  PubMed  Google Scholar 

  • Damasio AR, Anderson SW, Tranel D (2012) The frontal lobes. In: Heilman KM, Valenstein E (eds) Clinical neuropsychology, 5th edn. Oxford University Press, New York, pp 296–348

    Google Scholar 

  • Damasio AR, Damasio H, Rizzo M et al (1982) Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol 39:15–20

    Article  PubMed  Google Scholar 

  • De Schotten MT, Dell’Acqua F, Valabregue R et al (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96

    Article  Google Scholar 

  • Desmond JE, Gabrieli JD, Glover GH (1998) Dissociation of frontal and cerebellar activity in a cognitive task: evidence for a distinction between selection and search. Neuroimage 7:368–376

    Article  PubMed  Google Scholar 

  • Devlin JT, Raley J, Tunbridge E et al (2003) Functional asymmetry for auditory processing in human primary auditory cortex. J Neurosci 23:11516–11522

    PubMed  Google Scholar 

  • Draganski B, Kherif F, Kloppel S et al (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28:7143–7152

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Heim S, Zilles K, Amunts K (2009) A systems perspective on the effective connectivity of overt speech production. Philos Trans A Math Phys Eng Sci 367:2399–2421

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher CM (1979) Capsular infarcts: the underlying vascular lesions. Arch Neurol 36:65–73

    Article  PubMed  Google Scholar 

  • Ford A, McGregor KM, Case K et al (2010) Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage 52:1230–1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford A, Triplett W, Sudhyadhom A et al (2013) Broca's area and its striatal and thalamic connections: a diffusion-MRI tractography study. Front Neuroanat 7(8):1

    Google Scholar 

  • Freedman M, Alexander MP, Naeser MA (1984) Anatomic basis of transcortical motor aphasia. Neurology 34:409–417

    Article  PubMed  Google Scholar 

  • Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6:78–84

    Article  PubMed  Google Scholar 

  • Friederici AD (2003) Phonological processing in language production: time course of brain activity. Neuroreport 14(16):2031–2033

    Article  PubMed  Google Scholar 

  • Friederici AD, Kotz SA, Werheid K (2003) Syntactic comprehension in Parkinson’s disease: investigating early automatic and late integrational processes using event-related brain potentials. Neuropsychology 17:133–142

    Article  PubMed  Google Scholar 

  • Fromm D, Holland AL, Swindell CS et al (1985) Various consequences of subcortical stroke: prospective study of 16 consecutive cases. Arch Neurol 42:943–950

    Article  PubMed  Google Scholar 

  • Gerfen C (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    Article  PubMed  Google Scholar 

  • Gillingham FJ, Watson WS, Donaldson AA, Naughton JAL (1960) The surgical treatment of parkinsonism. Br Med J 2(5210):1395

    Article  PubMed  PubMed Central  Google Scholar 

  • Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482

    Article  PubMed  Google Scholar 

  • Gold M, Nadeau SE, Jacobs DH et al (1997) Adynamic aphasia: a transcortical motor aphasia with defective semantic strategy formation. Brain Lang 57:374–393

    Article  PubMed  Google Scholar 

  • Goldberg G (1985) Supplementary motor area structure and function: review and hypotheses. Behav Brain Sci 8:567–616

    Article  Google Scholar 

  • Grossman M, Cooke A, DeVita C et al (2003) Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology 60:775–781

    Article  PubMed  Google Scholar 

  • Haber SN, Kim KS, Mailly P et al (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376

    Article  PubMed  Google Scholar 

  • Hagoort P (2003) How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. Neuroimage 20:S18–S29

    Article  PubMed  Google Scholar 

  • Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9:416–423

    Article  PubMed  Google Scholar 

  • Hagoort P, Hald L, Bastiaansen M et al (2004) Integration of word meaning and world knowledge in language comprehension. Science 304(5669):438–441

    Article  PubMed  Google Scholar 

  • Hayashi MM, Ulatowska HK, Sasnuma S (1985) Subcortical aphasia with deep dyslexia: a case study of a Japanese patient. Brain Lang 25:293–313

    Article  PubMed  Google Scholar 

  • Hillis AE, Wityk RJ, Barker PB et al (2002) Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 125:1094–1104

    Article  PubMed  Google Scholar 

  • Inase M, Tokuno H, Nambu A (1999) Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833:191–201

    Article  PubMed  Google Scholar 

  • Jonas S (1981) The supplementary motor region and speech emission. J Commun Disord 14:349–373

    Article  PubMed  Google Scholar 

  • Kim JH, Lee JM, Jo HJ et al (2010) Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49:2375–2386

    Article  PubMed  Google Scholar 

  • Kinoshita M, Shinohara H, Hori O et al (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy: clinical article. J Neurosurg 116:323–330

    Article  PubMed  Google Scholar 

  • Kinoshita M et al (2015) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220(6):3399–3412

    Article  PubMed  Google Scholar 

  • Knopman DS, Selnes OA, Niccum N et al (1984) Recovery of naming in aphasia: relationship to fluency, comprehension, and CT findings. Neurology 34:1461–1470

    Article  PubMed  Google Scholar 

  • Lawes INC, Barrick TR, Murugam V et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79

    Article  PubMed  Google Scholar 

  • Lee C, Grossman M, Morris J et al (2003) Attentional resource and processing speed limitations during sentence processing in Parkinson’s disease. Brain Lang 85:347–356

    Article  PubMed  Google Scholar 

  • Leh SE, Ptito A, Chakravarty MM et al (2007) Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett 419:113–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehericy S, Ducros M, Krainik A et al (2004a) 3-D diffusion tensor axonal tracking shows distinct SMA and Pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309

    Google Scholar 

  • Lehéricy S, Ducros M, De Moortele V et al (2004b) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529

    Google Scholar 

  • Lichtheim L (1885) On aphasia. Brain 7:433–484

    Article  Google Scholar 

  • Lieberman RR, Ellenberg M, Restum WH (1986) Aphasia associated with verified subcortical lesions: three case reports. Arch Phys Med Rehabil 67:410–414

    PubMed  Google Scholar 

  • Luria AR (1970) Traumatic aphasia. Mouton, Oxford

    Book  Google Scholar 

  • Mandelli ML, Caverzasi E, Binney RJ et al (2014) Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci 34:9754–9767

    Article  PubMed  PubMed Central  Google Scholar 

  • Marie P (1906) Revision de la question de l’aphasie: Que faut-il penser des aphasies sous-courticales (aphasies pures)? La Semaine Medicale 42, October 1906

    Google Scholar 

  • Mazzocchi F, Vignolo LA (1979) Localisation of lesions in aphasia: clinical-CT scan correlations in stroke patients. Cortex 15(4):627–653

    Article  PubMed  Google Scholar 

  • Mega MS, Alexander MP (1994) Subcortical aphasia: the core profile of capsulostriatal infarction. Neurology 44:1824–1829

    Article  PubMed  Google Scholar 

  • Metter EJ, Riege WH, Hanson WR et al (1983) Comparison of metabolic rates, language, and memory in subcortical aphasias. Brain Lang 19:33–47

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex 12(9):926–935

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  Google Scholar 

  • Milardi D, Gaeta M, Marino S et al (2014) Basal ganglia network by constrained spherical deconvolution: A possible cortico-pallido pathway. Mov Disord 30(3):342–349. doi:10.1002/mds.25992

    Article  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia. Prog Neurobiol 50:381–425

    Article  PubMed  Google Scholar 

  • Mitchell IJ, Jackson A, Sambrook MA (1989) The role of the subthalamic nucleus in experimental chorea. Brain 112:1533–1548

    Article  PubMed  Google Scholar 

  • Moro A, Tettamanti M, Perani D et al (2001) Syntax and the brain: disentangling grammar by selective anomalies. Neuroimage 13:110–118

    Article  PubMed  Google Scholar 

  • Murdoch BE, Chenery HJ, Kennedy M (1989) Aphemia associated with bilateral striato-capsular lesions subsequent to cerebral anoxia. Brain Inj 3:41–49

    Article  PubMed  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869

    Article  PubMed  Google Scholar 

  • Nadeau SE, Crosson B (1997) Subcortical APHASIA. Brain Lang 58:355–402

    Article  PubMed  Google Scholar 

  • Naeser MA, Alexander MP, Helm-Estabrooks N et al (1982) Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes. Arch Neurol 39:2–14

    Article  PubMed  Google Scholar 

  • Nakano K (2000) Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev 22:S5–S16

    Article  PubMed  Google Scholar 

  • Nambu A (2003) A new dynamic model of the cortico-basal ganglia loop. Prog Brain Res 143:461–466

    Article  Google Scholar 

  • Nambu A, Tokuno H, Hamada I et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300

    PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117

    Article  PubMed  Google Scholar 

  • Petersson KM, Forkstam C, Ingvar M (2004) Artificial syntactic violations activate Broca’s region. Cogn Sci 28(3):383–407

    Google Scholar 

  • Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310

    Article  PubMed  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  PubMed  Google Scholar 

  • Ramsburger G, Hillman RE (1985) Temporal speech characteristics associated with anterior left hemisphere cortical and subcortical lesions: a preliminary case report. Brain Lang 24:59–73

    Article  Google Scholar 

  • Robin DA, Schienberg S (1990) Subcortical lesions and aphasia. J Speech Hear Disord 55:90–100

    Article  PubMed  Google Scholar 

  • Robinson G, Blair J, Cipolotti L (1998) Dynamic aphasia: an inability to select between competing verbal responses? Brain 121:77–89

    Article  PubMed  Google Scholar 

  • Robinson G, Shallice T, Cipolotti L (2005) A failure of high level verbal response selection in progressive dynamic aphasia. Cogn Neuropsychol 22:661–694

    Article  PubMed  Google Scholar 

  • Robinson G, Shallice T, Cipollotti L (2006) Dynamic aphasia in progressive supranuclear palsy: a deficit in generating a fluent sequence of novel thought. Neuropsychologia 44:1344–1360

    Article  PubMed  Google Scholar 

  • Robles SG, Gatignol P, Capelle L et al (2005) The role of dominant striatum in language: a study using intraoperative electrical stimulations. J Neurol Neurosurg Psychiatry 76:940–946

    Article  PubMed Central  Google Scholar 

  • Sambin S, Teichmann M, de Diego Balaguer R et al (2012) The role of the striatum in sentence processing: disentangling syntax from working memory in Huntington’s disease. Neuropsychologia 50:2625–2635

    Article  PubMed  Google Scholar 

  • Seghier ML, Price CJ (2010) Reading aloud boosts connectivity through the putamen. Cereb Cortex 20:570–582

    Article  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  Google Scholar 

  • Simonyan K, Herscovitch P, Horwitz B (2013) Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage 70:21–32

    Article  PubMed  Google Scholar 

  • Svinnilson E, Torvik A, Lowe R et al (1960) Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. Acta Psychiatr Scand 35:358–377

    Article  Google Scholar 

  • Tanaka M, Singh Alvarado J, Murugan M et al (2016) Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences. Proc Natl Acad Sci U S A 113(12):E1720–E1727

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanridag O, Kirshner HS (1985) Aphasia and agraphia in lesions of the posterior internal capsule and putamen. Neurology 35:1797–1801

    Article  PubMed  Google Scholar 

  • Tettamanti M, Moro A, Messa C et al (2005) Basal ganglia and language: phonology modulates dopaminergic release. Neuroreport 16:397–401

    Article  PubMed  Google Scholar 

  • Ullman MT (2001) A neurocognitive perspective on language: the declarative/procedural model. Nat Rev Neurosci 2:717–726

    Article  PubMed  Google Scholar 

  • Ullman MT (2004) Contributions of memory circuits to language: the declarative/procedural model. Cognition 92:231–270

    Article  PubMed  Google Scholar 

  • Ullman MT (2006) Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex 42:480–485

    Article  PubMed  Google Scholar 

  • Ullman MT, Corkin S, Coppola M et al (1997) A neural dissociation within language: evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J Cogn Neurosci 9:266–276

    Article  PubMed  Google Scholar 

  • Vigneau M, Beaucousin V, Herve PY et al (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30(4):1414–1432

    Article  PubMed  Google Scholar 

  • Vosse T, Kempen G (2000) Syntactic structure assembly in human parsing: a computational model based on competitive inhibition and a lexicalist grammar. Cognition 75(2):105–143

    Article  PubMed  Google Scholar 

  • Wallesch C-W (1985) Two syndromes of aphasia occurring with ischemic lesions involving the left basal ganglia. Brain Lang 25:357–361

    Article  PubMed  Google Scholar 

  • Wallesch C-W, Pagagno C (1988) Subcortical aphasia. In: Rose FC, Whurr R, Wyke MA (eds) Aphasia. Whurr Publishers, London, pp 256–287

    Google Scholar 

  • Weiller C, Willmes K, Reiche W, Thron A, Isensee C, Buell U, Ringelstein EB (1993) The case of aphasia or neglect after striatocapsular infarction. Brain 116(6):1509–1525

    Article  PubMed  Google Scholar 

  • Wiesendanger R, Wiesendanger M (1985) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (Macaca fascicularis). Exp Brain Res 59(1):91–104

    PubMed  Google Scholar 

  • Wernicke C (1874) Der Aphasische Symptomencomplex. Cohn & Weigert, Breslau

    Google Scholar 

  • Wildgruber D, Ackermann H, Grodd W (2001) Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage 13:101–109

    Article  PubMed  Google Scholar 

  • Wise RJ, Greene J, Buchel C et al (1999) Brain regions involved in articulation. Lancet 353:1057–1061

    Article  PubMed  Google Scholar 

  • Yamadori A, Ohira T, Seriu M et al (1984) Transcortical sensory aphasia produced by lesions of the anterior basal ganglia area. Brain Lang 36:261–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Bohsali Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bohsali, A., Crosson, B. (2016). The Basal Ganglia and Language: A Tale of Two Loops. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_10

Download citation

Publish with us

Policies and ethics