Skip to main content

Principles of Sulfide Oxidation and Acid Rock Drainage

  • Chapter
  • First Online:

Abstract

Oxidation of sulfide minerals releases sulfuric acid and dissolved metals, with iron sulfides pyrite (FeS2) and pyrrhotite (Fe(1−x)S) recognized as the most common acid-forming minerals. Several factors control the oxidation rate including: the oxidant type, sulfide morphology, microbial action, and trace element contents. Whilst metal sulfides such as galena and sphalerite are less acid-forming, they are typically sources of environmentally significant elements such as Cd , Pb and Zn. Common sulfide oxidation reaction products are metal-sulfate efflorescent salts . Dissolution of these minerals is critical to the storage and transport of acids and metals released upon weathering of mineralized rock or mine wastes . Acid formed by sulfide oxidation can be consumed through reaction with gangue minerals. Neutralization is primarily offered by dissolution of carbonate minerals with calcite and dolomite the most effective. Factors affecting carbonate reactivity include: grain size , texture and the presence of trace elements which can influence a mineral’s resistance to weathering. Silicate minerals such as olivine, wollastonite and serpentinite are recognized as effective longer term neutralizers. Lesser neutralizing potential contributions from phyllosilicates , pyroxenes, amphiboles and feldspars have been reported. Micas, clays and organic matter can temporarily adsorb H+ ions through cation exchange reactions, with gibbsite and ferric hydroxide recognized as offering neutralizing capacity under acidic conditions. Ultimately, the balance of acid producing and acid consuming chemical reactions will determine the production of acid rock drainage (ARD).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbassi R, Khan F, Hawbolt K (2009) Prediction of minerals producing acid mine drainage using a computer-assisted thermodynamic chemical equilibrium model. Mine Water Environ 28:74–78

    Article  Google Scholar 

  • Acero P, Cama J, Ayora C (2007) Rate law for galena dissolution in acidic environment. Chem Geol 245:219–229

    Article  Google Scholar 

  • Asta MP, Cama J, Ayora C, Acero P, de Giudici G (2010) Arsenopyrite dissolution rates in O2-bearing solutions. Chem Geol 273:272–285

    Article  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  Google Scholar 

  • Baker-Austin C, Potrykus J, Wexler M, Bond PL, Dopson M (2010) Biofilm development in the extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 14:485–491

    Article  Google Scholar 

  • Balci NC (2010) Effect of bacterial activity on trace metals release from oxidation of sphalerite at low pH (< 3) and implications for AMD environment. Environ Earth Sci 60:485–493

    Article  Google Scholar 

  • Becker M (2009) The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits and its effect on flotation performance. Unpublished DPhil thesis, University of Pretoria, Pretoria

    Google Scholar 

  • Belzile N, Chen YW, Cai MF, Li Y (2004) A review on pyrrhotite oxidation. J Geochem Explor 84:65–76

    Article  Google Scholar 

  • Biegler T (1976) Oxygen reduction on sulfide minerals: part II. Relation between activity and semiconducting properties of pyrite electrodes. J Electroanal Chem 70:265–275

    Article  Google Scholar 

  • Blanchard M, Alfredsson M, Brodholt J, Wright K, Catlow CRA (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: a DFT study. Geochim Cosmochim Acta 71:624–630

    Article  Google Scholar 

  • Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Article  Google Scholar 

  • Bowell RJ, Rees SB, Parshley JV (2000) Geochemical predictions of metal leaching and acid generation: geologic controls and baseline assessment. In: Cluer JK, Price JG, Struhsacker EM, Hardyman RF, Morris CL (eds) Geology and ore deposits 2000: the great basin and beyond: Geological Society of Nevada symposium proceedings, Reno/Sparks, pp 799–823

    Google Scholar 

  • Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometall 152:33–43

    Article  Google Scholar 

  • Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Danyushevsky L, Shimizu M, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICP-MS study. Geochim Cosmochim Acta 73:4761–4791

    Article  Google Scholar 

  • Corkhill CL, Vaughan DJ (2009) Arsenopyrite oxidation—a review. Appl Geochem 24:2342–2361

    Article  Google Scholar 

  • Craig JR, Vokes FM, Solberg TN (1998) Pyrite: physical and chemical textures. Miner Deposita 34:82–101

    Article  Google Scholar 

  • Crundwell FK (1996) The formation of biofilms of iron-oxidising bacteria on pyrite. Min Eng 9:1081–1089

    Article  Google Scholar 

  • Crundwell FK (2003) How do bacteria interact with minerals? Hydrometall 71:75–81

    Article  Google Scholar 

  • Dold B (2005) Basic concepts of environmental geochemistry of sulfide mine-waste. XXIV Curso Latinoamericano de Metalogenia UNESCO—SEG, Lima, Peru

    Google Scholar 

  • Edwards KJ, Schrenk MO, Hamers RJ, Banfield JF (1998) Microbial oxidation of pyrite: experiments using microorganisms for an extreme acid environment. Am Mineral 83:1444–1453

    Article  Google Scholar 

  • Edwards KJ, Goebel B, Rogers TM, Schrenk MO, Gihring TM, Cardona MM, Hu B, McGuire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179

    Article  Google Scholar 

  • Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ, Banfield JF (2000) Geochemical and biological aspects of sulphide mineral dissolution: lessons from Iron Mountain, California. Chem Geol 169:383–397

    Google Scholar 

  • Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia Pac J Chem Eng 2:47–62

    Article  Google Scholar 

  • Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Env Sci Technol 25:141–199

    Article  Google Scholar 

  • Florian B, Noel N, Sand W (2010) Visualization of initial attachment of bioleaching bacteria using combined atomic force and epifluorescence microscopy. Min Eng 23:532–535

    Article  Google Scholar 

  • Garcia O, Bigham JM, Tuovinen OH (1995) Sphalerite oxidation by Thiobacillus fertooxidans and Thiobacillus thiooxidans. Can J Microbiol 41:578–584

    Article  Google Scholar 

  • Gilbert SE, Cooke DR, Hollings P (2003) The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environ Geol 44:687–697

    Article  Google Scholar 

  • Harvey MC, Schreiber ME, Rimstidt JD, Griffith MM (2006) Scorodite dissolution kinetics: implications for arsenic release. Environ Sci Technol 40:6709–6714

    Article  Google Scholar 

  • Hudson-Edwards KA, Lottermoser BG, Jamieson HE (2011) Mine wastes: past, present, future. Elements 7:375–380

    Article  Google Scholar 

  • Hustwit CC, Ackman TE, Erikson PE (1992) The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Environ Res 64:817–823

    Article  Google Scholar 

  • Jambor JL (1994) Mineralogy of sulfide rich tailings and their oxidation products. In: Blowes DW, Jambor JL (eds) The environmental geochemistry of sulfide mine wastes. Mineralogical Association of Canada, Short Course Series 22, pp 59–102

    Google Scholar 

  • Jambor JL (2003) Mine-waste mineralogy and mineralogical perspectives of acid-base accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series 31, pp 117–145

    Google Scholar 

  • Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40:303–350

    Article  Google Scholar 

  • Jambor JL, Dutrizac JE, Groat L, Raudsepp M (2002) Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environ Geol 43:1–17

    Article  Google Scholar 

  • Keith CN, Vaughan DJ (2000) Mechanisms and rates of sulfide oxidation in relation to the problems of acid rock (mine) drainage. In: Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management, mineralogical society series 9, pp 117–139

    Google Scholar 

  • Kimball BK, Rimstidt JD, Brantley SL (2010) Chalcopyrite dissolution rate laws. Appl Geochem 25:972–983

    Article  Google Scholar 

  • Kwong YTJ (1993) Prediction and prevention of acid rock drainage from a geological and mineralogical perspective. MEND report 1.32.1, NHRI contribution CS-92054, Ottawa, Ontario

    Google Scholar 

  • Kwong YTJ (1995) Thoughts on ways to improve acid drainage and metal leaching prediction for metal mines. US geological survey water resources investigations report, pp 95–4227

    Google Scholar 

  • Kwong YTJ, Swerhone GW, Lawrence JR (2003) Galvanic sulfide oxidation as a metal-leaching mechanism and its environmental implications. Geochem Explor Env Anal 3:337–343

    Article  Google Scholar 

  • Lapakko KA (2002) Metal mine rock and waste characterization tools: an overview. Metal Mining and Sustainable development website#67. http://pubs.iied.org/pdfs/G00559.pdf

  • Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, García-Meza JV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometall 103:35–44

    Article  Google Scholar 

  • Leathen WW, Braley SA, McIntyre ID. (1953a) The role of bacteria in the formation of acid from certain sulphuric constituents associated with bituminous coal, Thiobacillus thioxidans. Appl Microbiol 1:61–64

    Google Scholar 

  • Leathen WW, Braley SA, McIntyre ID (1953b) The role of bacteria in the formation of acid from certain sulphuric constituents associated with bituminous coal, II Ferrous-iron oxidising bacteria. Appl Microbiol 1:65–68

    Google Scholar 

  • Lee E, Han Y, Park J, Hong J, Silva RA, Kim S, Kim H (2015) Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J Environ Manag 147:124–131

    Article  Google Scholar 

  • Li J, Kawashima N, Kaplun K, Absolon VJ, Gerson AR (2010) Chalcopyrite leaching: the rate controlling factors. Geochim Cosmochim Acta 74:2881–2893

    Article  Google Scholar 

  • Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts, 3rd edn. Springer, Berlin 400 pp

    Book  Google Scholar 

  • Ma S, Banfield JF (2011) Micron-scale Fe2+/Fe3+, intermediate sulfur species and O2 gradients across the biofilm–solution–sediment interface control biofilm organization. Geochim Cosmochim Acta 75:3568–3580

    Article  Google Scholar 

  • Mielke RE, Pace DL, Porter T, Southam G (2003) A critical stage in the formation of acid mine drainage: colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology 1:81–90

    Article  Google Scholar 

  • Mills C, Robertson A, Shaw S (2015) Acid rock drainage, EnviroMine. http://technology.infomine.com/enviromine/ard/home.htm

  • Moncur MC, Jambor JL, Ptacek CJ, Blowes DW (2009) Mine drainage from the weathering of sulfide minerals and magnetite. Appl Geochem 24:2362–2373

    Article  Google Scholar 

  • Morin KA (2010) The science and non-science of minesite-drainage chemistry. MDAG Internet Case Study#37. www.mdag.com/case_studies/cs37.html

  • Morth AH, Smith EE, Shumate KS (1972) Pyrite systems: A mathematical model contract report for the US protection agency. EPA-R2 72 002

    Google Scholar 

  • Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Appl Geochem 55:471–482

    Google Scholar 

  • Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571

    Article  Google Scholar 

  • Murceigo A, Álvarez-Ayuso E, Pellitero E, Rodríguez MA, García-Sánchez A, Tamayo A, Rubio J, Rubio F, Rubin J (2011) Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. J Hazard Mater 186:590–601

    Article  Google Scholar 

  • Nesbitt HW, Jambor JL (1998) Role of mafic minerals in neutralizing ARD, demonstrated using a chemical weathering methodology. In: Cabri LJ, Vaughan DJ (eds) Short course handbook on ore and environmental mineralogy. Mineralogical Association of Canada 27, pp 403–421

    Google Scholar 

  • Nicholson RV, Scharer JM (1994) Laboratory studies of pyrrhotite oxidation kinetics. In: Alpers CA, Blowes DW (eds) Environmental chemistry of sulfide oxidation, ACS symposium series 550. American Chemical Society, Washington, DC

    Google Scholar 

  • Nordstrom DK (2009) Acid rock drainage and climate change. J Geochem Explor 100:97–104

    Article  Google Scholar 

  • Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. Rev Mineral Geochem 35:361–390

    Google Scholar 

  • Olson GJ (1991) Rate of pyrite bioleaching by Thiobacillus ferrooxidans: results of an interlaboratory comparison. Appl Environ Microbiol 57:642–644

    Google Scholar 

  • Paktunc AD (1999) Mineralogical constraints on the determination of neutralising potential and prediction of acid mine drainage. Environ Geol 39:103–112

    Article  Google Scholar 

  • Parbhakar-Fox A, Lottermoser BG (2015) A critical review of acid rock drainage prediction processes and practices. Min Eng 82:107–124

    Article  Google Scholar 

  • Parker G (1999) A critical review of acid generation resulting from sulfide oxidation: processes, treatment and control. Aust Miner Energy Environ Found Melbourne 11:1–182

    Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits part A: processes, techniques and health issues. Rev Econ Geol 6A:71–116

    Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880

    Article  Google Scholar 

  • Ritchie AIM (1994) Sulfide oxidation mechanisms: controls and rate of oxygen transport. In: Jambor JL, Blowes DW (eds) The environmental geochemistry of sulfide mine wastes. Short course series, Mineralogical Association of Canada 22, pp 201–246

    Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  Google Scholar 

  • Sand W, Gerke T, Hallman R, Schippers A (1995) Sulfur chemistry, biofim, and the (in)direct attack mechanism—a crictical evaluation of bacterial leaching. Appl Microbiol Biotech 43:961–966

    Article  Google Scholar 

  • Savage KS, Stefan D, Lehner S (2008) Impurities and heterogeneity in pyrite: influences on electrical properties and oxidation products. Appl Geochem 23:103–120

    Article  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl Environ Microbiol 65:319–321

    Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for generation of acid mine drainage. Science 279:1519–1522

    Article  Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123

    Article  Google Scholar 

  • Smith L, Beckie R (2003) Hydrologic and geochemical transport processes in mine. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series 31, pp 51–72

    Google Scholar 

  • Stanton MR, Gemery-Hill PA, Shanks WC, Taylor CD (2008) Removal of zinc and trace metal release from dissolving sphalerite at pH 2.0 to 4.0. Appl Geochem 23:136–147

    Article  Google Scholar 

  • Strömberg B, Banwart SA (1999) Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size. Appl Geochem 14:1–16

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1995) Aquatic chemistry, 3rd edn. Wiley, New York 1040 pp

    Google Scholar 

  • Tao H, Dongwei L (2014) Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy—a presentation. Biotechnol Rep 4:107–119

    Article  Google Scholar 

  • Thomas JE, Skinner WM, Smart RC (2003) A comparison of the dissolution behaviour of troilite with other iron(II) sulfides; implications of structure. Geochim Cosmochim Acta 67:831–843

    Article  Google Scholar 

  • Thurston RS, Mandernack KW, Shanks WC (2010) Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation. Chem Geol 269:252–261

    Article  Google Scholar 

  • Tyson GW, Chapman J, Hughenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  Google Scholar 

  • Weber PA, Thomas JE, Skinner WM, Smart RC (2004) Improved acid neutralisation capacity assessment of iron carbonates by titration and theoretical calculation. Appl Geochem 19:687–694

    Article  Google Scholar 

  • Weisener CG, Weber PA (2010) Preferential oxidation of pyrite as a function of morphology and relict texture. NZ J Geol Geophys 53:22–33

    Article  Google Scholar 

  • Weisener CG, Smart RC, Gerson AR (2003) Kinetics and mechanisms of the leaching of low Fe-sphalerite. Geochim Cosmochim Acta 67:823–830

    Article  Google Scholar 

  • Wiersma CL, Rimstidt JD (1984) Rates of reaction of pyrite and marcasite with ferric iron at pH 2. Geochim Cosmochim Acta 48:85–92

    Article  Google Scholar 

  • Yunmei Y, Yongxuana Z, Williams-Jones AE, Zhenmina G, Dexian L (2004) A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl Geochem 19:435–444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Parbhakar-Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parbhakar-Fox, A., Lottermoser, B. (2017). Principles of Sulfide Oxidation and Acid Rock Drainage. In: Lottermoser, B. (eds) Environmental Indicators in Metal Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-42731-7_2

Download citation

Publish with us

Policies and ethics