Implementation of Normative Practical Reasoning with Durative Actions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9628)


Autonomous agents operating in a dynamic environment need constantly to reason about actions in pursuit of their goals, while taking into consideration possible norms imposed on those actions. Normative practical reasoning supports agents decision making about what is best for an agent to do in a given situation. What makes practical reasoning challenging is the conflict between goals that the agent is pursuing and the norms that the agent is trying to uphold. We offer a formal model that allows the agents to plan for conflicting goals and norms in presence of durative actions that can be executed concurrently. We compare plans based on decision-theoretic notions (i.e. utility) such that the utility gain of goals and utility loss of norm violations are the basis of this comparison. The set of optimal plans consists of plans that maximise the overall utility, each of which can be chosen by the agent to execute. The formal model is implemented computationally using answer set programming, which in turns permits the statement of the problem in terms of a logic program that can be queried for solutions with specific properties. We demonstrate how a normative practical reasoning problem can be mapped into an answer set program such that the optimal plans of the former can be obtained as the answer sets of the latter.


Normative Practical Reasoning Actual Duration Answer Set Norm Violation Norm Activation Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aldewereld, H., Dignum, F., García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A., Sierra, C.: Operationalisation of norms for usagein electronic institutions. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8–12, pp. 223–225. ACM (2006)Google Scholar
  2. 2.
    Alrawagfeh, W., Meneguzzi, F.: Utilizing permission norms in BDI practical normative reasoning. In: Ghose, A., et al. (eds.) COIN 2014. LNCS, vol. 9372, pp. 1–18. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25420-3_1 CrossRefGoogle Scholar
  3. 3.
    Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying norm-governed computational societies. ACM Trans. Comput. Log. 10(1), 1–42 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1), 281–300 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: A verification framework for agent programming with declarative goals. J. Appl. Logic 5(2), 277–302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Börger, E., Stärk, R.: Asynchronous multi-agent ASMs. In: Börger, E., Stärk, R. (eds.) Abstract State Machines, pp. 207–282. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID architecture: conflicts between beliefs, obligations, intentions and desires. In: Proceedings of the Fifth International Conference on Autonomous Agents. AGENTS 2001, pp. 9–16. ACM, Montreal (2001)Google Scholar
  8. 8.
    Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reasoning about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Criado, N., Argente, E., Botti, V.J.: A BDI architecture for normative decision making. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, May 10–14, vol. 1–3. IFAAMAS, pp. 1383–1384 (2010)Google Scholar
  10. 10.
    De Vos, M., Balke, T., Satoh, K.: Combining event-and state-based norms. In: Gini, M.L. Shehory, O., Ito, T., Jonker, C.M. (eds.) International conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2013, Saint Paul, MN, USA, May 6–10, IFAAMAS, pp. 1157–1158 (2013)Google Scholar
  11. 11.
    Doherty, P., Gustafsson, J., Karlsson, L., Kvarnström, J.: TAL: temporal action logics language specification and tutorial. Electron. Trans. Artif. Intell. 2, 273–306 (1998)MathSciNetGoogle Scholar
  12. 12.
    Esteva, M., Rodríguez-Aguilar, J.-A., Sierra, C., Garcia, P., Arcos, J.-L.: On the formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. In: Proceedings of the 2Nd International Joint Conference on Artificial Intelligence. IJCAI 1971, pp. 608–620. Morgan Kaufmann Publishers Inc., San Francisco (1971)Google Scholar
  14. 14.
    Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 3, 281–300 (1998)MathSciNetGoogle Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) ICLP, SLP, pp. 1070–1080. MIT Press (1988)Google Scholar
  16. 16.
    Gini, M.L., Shehory, O., Ito, T., Jonker, C.M. (eds.): International conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2013, Saint Paul, MN, USA, May 6–10, 2013. IFAAMAS (2013)Google Scholar
  17. 17.
    Hindriks, K.V., van der Hoek, W., van Riemsdijk, M.B.: Agent programming with temporally extended goals. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) 8th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10–15, 2009, vol. 1. IFAAMAS, pp. 137–144 (2009)Google Scholar
  18. 18.
    Hindriks, K.V., van Riemsdijk, M.B.: Satisfying maintenance goals. In: Baldoni, M., Son, T.C., Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI), vol. 4897, pp. 86–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Kafali, Ö., Günay, A., Yolum, P.: GOSU: computing Goal Support with commitments in multiagent systems. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Frontiers in Artificial Intelligence and Applications ECAI 2014–21st European Conference on Artificial Intelligence, 18–22 , Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), vol. 263, pp. 477–482. IOS Press (2014)Google Scholar
  20. 20.
    Kollingbaum, M.: Norm-governed Practical Reasonig Agents. Ph.D. thesis. University of Aberdeen (2005)Google Scholar
  21. 21.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95 (1986)CrossRefGoogle Scholar
  22. 22.
    Lee, J., Palla, R.: Reformulating temporal action logicsin answer set programming. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the Twenty-SixthAAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press (2012)Google Scholar
  23. 23.
    Lee, J., Palla, R.: Reformulating the situation calculus and theevent calculus in the general theory of stable models and in answer set programming. CoRR abs/1401.4607 (2014)Google Scholar
  24. 24.
    Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2), 39–54 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    y López, F.L., Luck, M., d’Inverno, M.: A normative framework for agent-based systems. In: Normative Multi-Agent Systems (NORMAS), pp. 24–35 (2005)Google Scholar
  26. 26.
    Oren, N., Vasconcelos, W., Meneguzzi, F., Luck, M.: Acting on norm constrained plans. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp. 347–363. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Panagiotidi, S., Vázquez-Salceda, J., Dignum, F.: Reasoning over norm compliance via planning. In: Aldewereld, H., Sichman, J.S. (eds.) COIN 2012. LNCS, vol. 7756, pp. 35–52. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Panagiotidi, S., Vázquez-Salceda, J., Vasconcelos, W.: Contextual norm-based plan evaluation via answer set programming. In: BajoPérez, J., et al. (eds.) Highlights on Practical Applications of Agentsand Multi-Agent Systems. AISC, vol. 156, pp. 197–206. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Pitt, J., Busquets, D., Riveret, R.: Formal models of social processes: the pursuit of computational justice in self-organising multi-agent systems. In: 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 269–270 (2013)Google Scholar
  30. 30.
    Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of The First International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319 (1995)Google Scholar
  31. 31.
    Schulz, C., Toni, F.: Justifying Answer Sets using Argumentation. CoRR abs/1411.5635 (2014)Google Scholar
  32. 32.
    Telang, P.R., Meneguzzi, F., Singh, M.P.: Hierarchical planning about goals and commitments. In: Gini, M.L., Shehory, O., Ito, T., Jonker, C.M. (eds.) International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2013, Saint Paul, MN, USA, May 6–10, 2013. IFAAMAS, pp. 877–884 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BathBathUK
  2. 2.Department of Computing ScienceUniversity of AberdeenAberdeenUK

Personalised recommendations