Towards Team Formation via Automated Planning

  • Christian Muise
  • Frank Dignum
  • Paolo Felli
  • Tim Miller
  • Adrian R. Pearce
  • Liz Sonenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9628)

Abstract

Cooperative problem solving involves four key phases: (1) finding potential members to form a team, (2) forming the team, (3) formulating a plan for the team, and (4) executing the plan. We extend recent work on multi-agent epistemic planning and apply it to the problem of team formation in a blocksworld scenario. We provide an encoding of the first three phases of team formation from the perspective of an initiator, and show how automated planning efficiently yields conditional plans that guarantee certain collective intentions will be achieved. The expressiveness of the epistemic planning formalism, which supports modelling with the nested beliefs of agents, opens the prospect of broad applicability to the operationalisation of collective intention.

References

  1. 1.
    Agmon, N., Stone, P.: Leading ad hoc agents in joint action settings with multiple teammates. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 341–348. IFAAMAS (2012)Google Scholar
  2. 2.
    Amgoud, L.: An argumentation-based model for reasoning about coalition structures. In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS (LNAI), vol. 4049, pp. 217–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Barrett, S., Agmon, N., Hazon, N., Kraus, S., Stone, P.: Communicating with unknown teammates. In: Proceedings of the Twenty-First European Conference on Artificial Intelligence, August 2014. http://www.cs.utexas.edu/users/ai-lab/?barrett:ecai14
  4. 4.
    Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning via symbolic model checking. Artif. Intell. 147(1), 35–84 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Decker, K.S., Lesser, V.R.: Designing a family of coordination algorithms. In: Proceedings of the First International Conference on Multi-Agent Systems, pp. 73–80. AAAI Press (1995)Google Scholar
  6. 6.
    Dignum, F., Dunin-Keplicz, B., Verbrugge, R.: Creating collective intention through dialogue. Log. J. IGPL 9(2), 289–304 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Dunin-Kȩplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems: A Formal Approach. Wiley, Ltd (2010)CrossRefMATHGoogle Scholar
  8. 8.
    Grant, J., Kraus, S., Perlis, D.: Formal approaches to teamwork. In: Artëmov, S.N., et al. (ed.) We Will Show Them! Essays in Honour of Dov Gabbay, vol. 2, pp. 39–68. College Publications (2005)Google Scholar
  9. 9.
    Grosz, B., Kraus, S.: Collaborative plans for complex group actions. Artif. Intell. 86, 269–358 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hoang, H., Lee-Urban, S., Muñoz-Avila, H.: Hierarchical plan representations for encoding strategic game AI. In: Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 63–68, Marina del Rey, California, USA, 1–5 June 2005 (2005)Google Scholar
  11. 11.
    Hoffmann, J.: Everything you always wanted to know about planning. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 1–13. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Johnson, M., Bradshaw, J., Duran, D., Vignati, M., Feltovich, P., Jonker, C., van Riemsdijk, M.B.: RT4T: a reconfigurable testbed for joint human-agent-robot teamwork. In: Workshop on Human-Robot Teaming, Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (2015)Google Scholar
  13. 13.
    Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M.: Joint activity testbed: blocks world for teams (BW4T). In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Jonker, C.M., van Riemsdijk, M.B., van de Kieft, I.C., Gini, M.: Compositionality of team mental models in relation to sharedness and team performance. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 242–251. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Kinny, D., Sonenberg, E., Ljungberg, M., Tidhar, G., Rao, A., Werner, E.: Planned team activity. In: Castelfranchi, C., Werner, E. (eds.) MAAMAW 1992. LNCS, vol. 830, pp. 227–256. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. 16.
    Li, S., Sun, W., Miller, T.: Communication in human-agent teams for tasks with joint action. In: COIN 2015: The XIX International Workshop on Coordination, Organizations, Institutions and Norms in Multiagent Systems, pp. 111–126 (2015)Google Scholar
  17. 17.
    Marcolino, L.S., Zhang, C., Jiang, A.X., Tambe, M.: A detailed analysis of a multi-agent diverse team. In: Balke, T., Dignum, F., van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS, vol. 8386, pp. 3–24. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Muise, C., Miller, T., Felli, P., Pearce, A., Sonenberg, L.: Efficient reasoning with consistent proper epistemic knowledge bases. In: Proceedings of the 14th International Conference on Autonomous Agents and Multi-Agent Systems (2015)Google Scholar
  19. 19.
    Muise, C.: Planner for Relevant Policies: Bitbucket repository. https://bitbucket.org/haz/pdkb-planning/. Accessed 26 Jan 2015 (2015)
  20. 20.
    Muise, C., Belle, V., Felli, P., McIlraith, S., Miller, T., Pearce, A., Sonenberg, L.: Planning over multi-agent epistemic states: A classical planning approach. In: The 29th AAAI Conference on Artificial Intelligence (2015)Google Scholar
  21. 21.
    Muise, C., Felli, P., Miller, T., Pearce, A.R., Sonenberg, L.: Leveraging FOND planning technology to solve multi-agent planning problems. In: Workshop on Distributed and Multi-Agent Planning, DMAP 2015 (2015)Google Scholar
  22. 22.
    Muise, C., McIlraith, S.A., Beck, J.C.: Improved non-deterministic planning by exploiting state relevance. In: The 22nd International Conference on Automated Planning and Scheduling (2012)Google Scholar
  23. 23.
    Nair, R., Tambe, M.: Hybrid BDI-POMDP framework for multiagent teaming. J. Artif. Intell. Res. (JAIR) 23, 367–420 (2005)MATHGoogle Scholar
  24. 24.
    Rahwan, T., Michalak, T.P., Elkind, E., Faliszewski, P., Sroka, J., Wooldridge, M., Jennings, N.R.: Constrained coalition formation. In: AAAI, vol. 11, pp. 719–725 (2011)Google Scholar
  25. 25.
    Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the First International Conference on Multi-Agent Systems, ICMAS 1995, pp. 312–319 (1995)Google Scholar
  26. 26.
    Sandholm, T., Lesser, V.: Coalitions among computationally bounded agents. Artif. Intell. Spec. Issue Econ. Principles Multi-Agent Syst. 94(1), 99–137 (1997)MathSciNetMATHGoogle Scholar
  27. 27.
    Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 10(12), 165–200 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Sierhuis, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M., Johnson, M.: Autonomy and interdependence in human-agent-robot teams. IEEE Intell. Syst. 27(2), 43–51 (2012)CrossRefGoogle Scholar
  29. 29.
    Tidhar, G., Rao, A.S., Sonenberg, E.A.: Guided team selection. In: Proceedings of the Second International Conference on Multi-Agent Systems, pp. 369–376. AAAI Press (1996)Google Scholar
  30. 30.
    Wooldridge, M., Jennings, N.R.: The cooperative problem-solving process. J. Log. Comput. 9(4), 563–592 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Muise
    • 1
  • Frank Dignum
    • 2
  • Paolo Felli
    • 1
  • Tim Miller
    • 1
  • Adrian R. Pearce
    • 1
  • Liz Sonenberg
    • 1
  1. 1.Department of Computing and Information SystemsUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Information and Computing SciencesUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations