Skip to main content

The Effect of Range and Bandwidth on the Round Complexity in the Congested Clique Model

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9797))

Included in the following conference series:

Abstract

The congested clique model is a message-passing model of distributed computation where k players communicate with each other over a complete network. Here we consider synchronous protocols in which communication happens in rounds (we allow them to be randomized with public coins). In the unicast communication mode, each player i has her own n-bit input \(x_i\) and may send \(k-1\) different b-bit messages through each of her \(k-1\) communication links in each round. On the other end is the broadcast communication mode, where each player can only broadcast a single message over all her links in each round. The goal of this paper is to complete our Brief Announcement at PODC 2015, where we initiated the study of the space that lies between the two extremes. For that purpose, we parametrize the congested clique model by two values: the range r, which is the maximum number of different messages a player is allowed to send in each round, and the bandwidth b, which is the maximum size of these messages. We show that the space between the unicast and broadcast congested clique models is very rich and interesting. For instance, we show that the round complexity of the pairwise set-disjointness function \(\textsc {pwdisj}\) is completely sensitive to the range r. This translates into a \(\varOmega (k)\) gap between the unicast (\(r=k-1\)) and the broadcast (\(r=1\)) modes. Moreover, provided that \(r \ge 2\) and \(rb/\log r = O(k)\), the round complexity of \(\textsc {pwdisj}\) is \(\varTheta (n/ k \log r )\). On the other hand, we also prove that the behavior of \(\textsc {pwdisj}\) is exceptional: almost every boolean function f has maximal round complexity \(\varTheta (n/b)\). Finally, we prove that \(\min \left( \left\lceil \frac{b'}{\lfloor \log r \rfloor } \right\rceil , \left\lceil \frac{r'}{r-1}\right\rceil \left\lceil \frac{b'}{b}\right\rceil \right) \) is an upper bound for the gap between the round complexities with parameters (br) and parameters \((b',r')\) of any boolean function.

Supported in part by the ANR project QuasiCool (ANR-12-JS02-011-01), MINECO grant TEC2014- 55713-R, Regional Government of Madrid (CM) grant Cloud4BigData (S2013/ICE-2894, co-funded by FSE & FEDER), NSF of China grant 61520106005, EC H2020 grants ReCred and NOTRE, CONICYT via Basal in Applied Mathematics, Núcleo Milenio Información y Coordinación en Redes ICM/FIC RC130003, Fondecyt 1130061.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Proceedings of SODA 2012, pp. 459–467 (2012)

    Google Scholar 

  2. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In: Proceedings of PODS 2012, pp. 5–14 (2012)

    Google Scholar 

  3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. In: Proceedings of FOCS 2002, pp. 209–218 (2002)

    Google Scholar 

  4. Becker, F., Fernández Anta, A., Rapaport, I., Rémila, E.: Brief announcement: a hierarchy of congested clique models, from broadcast to unicast. In: Proceedings of PODC 2015, pp. 167–169 (2015)

    Google Scholar 

  5. Becker, F., Kosowski, A., Nisse, N., Rapaport, I., Suchan, K.: Allowing each node to communicate only once in a distributed system: shared whiteboard models. In: Proceedings of SPAA 2012, pp. 11–17 (2012)

    Google Scholar 

  6. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding a referee to an interconnection network: what can (not) be computed in one round. In: Proceedings of IPDPS 2011, pp. 508–514 (2011)

    Google Scholar 

  7. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-in-hand communication model for networks: private coins, public coins and determinism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95. Springer, Heidelberg (2014)

    Google Scholar 

  8. Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight bound for set disjointness in the message-passing model. In: Proceedings of FOCS 2013, pp. 668–677 (2013)

    Google Scholar 

  9. Braverman, M., Oshman, R.: On information complexity in the broadcast model. In: Proceedings of PODC 2015, pp. 355–364 (2015)

    Google Scholar 

  10. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: Proceedings of PODC 2015, pp. 143–152

    Google Scholar 

  11. Chakrabart, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the direct sum problem for simultaneous message complexity. In: Proceedings of FOCS 2001, pp. 270–278. IEEE (2001)

    Google Scholar 

  12. Chattopadhyay, A., Mukhopadhyay, S.: Tribes is hard in the message passing model. In: Proceedings of STACS 2009, pp. 224–237 (2015)

    Google Scholar 

  13. Dolev, D., Feder, T.: Multiparty communication complexity. In: Proceedings of FOCS 1989, pp. 428–433 (1989)

    Google Scholar 

  14. Dolev, D., Lenzen, C., Peled, S.: “Tri, Tri Again”: finding triangles and small subgraphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 195–209. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of PODC 2014, pp. 367–376 (2014)

    Google Scholar 

  16. Ďuriš, P., Rolim, J.D.: Lower bounds on the multiparty communication complexity. J. Comput. Syst. Sci. 56(1), 90–95 (1998)

    Google Scholar 

  17. Gronemeier, A.: Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and disjointness. In: Proceedings of STACS 2009, pp. 505–516 (2009)

    Google Scholar 

  18. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic graph streams. In: Proceedings of PODS 2015, pp. 241–247 (2015)

    Google Scholar 

  19. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity and MST. In: Proceedings of PODC 2015, pp. 91–100 (2015)

    Google Scholar 

  20. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to MapReduce. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 149–164. Springer, Heidelberg (2014)

    Google Scholar 

  21. Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time distributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 514–530. Springer, Heidelberg (2014)

    Google Scholar 

  22. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraph problem in the randomized multiparty simultaneous messages model. In: Scheideler, C. (ed.) SIROCCO 2015. LNCS, vol. 9439, pp. 370–384. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  24. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  25. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In: Proceedings of PODC 2013, pp. 42–50 (2013)

    Google Scholar 

  26. Li, Y., Sun, X., Wang, C., Woodruff, D.P.: On the communication complexity of linear algebraic problems in the message passing model. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 499–513. Springer, Heidelberg (2014)

    Google Scholar 

  27. Lotker, Z., Pavlov, E.: MST construction in \({O}(\log \log n)\) communication rounds. In: Proceedings of SPAA 2003, pp. 94–100 (2003)

    Google Scholar 

  28. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting. In: Proceedings of PODC 2011, pp. 249–256 (2011)

    Google Scholar 

  29. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  MATH  Google Scholar 

  30. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multi-party communication complexity, made easy. In: Proceedings of SODA 2012, pp. 486–501

    Google Scholar 

  31. Woodruff, D.P., Zhang, Q.: An optimal lower bound for distinct elements in the message passing model. In: Proceedings of SODA 2014, pp. 718–733 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Rapaport .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Becker, F., Anta, A.F., Rapaport, I., Rémila, E. (2016). The Effect of Range and Bandwidth on the Round Complexity in the Congested Clique Model. In: Dinh, T., Thai, M. (eds) Computing and Combinatorics . COCOON 2016. Lecture Notes in Computer Science(), vol 9797. Springer, Cham. https://doi.org/10.1007/978-3-319-42634-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42634-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42633-4

  • Online ISBN: 978-3-319-42634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics