Multimodality Therapy for Metastatic Gastrointestinal Stromal Tumor

  • David A. Mahvi
  • Emily Z. Keung
  • Chandrajit P. Raut
Chapter

Abstract

Gastrointestinal stromal tumors (GISTs) represent approximately 80 % of sarcomas that arise from the gastrointestinal tract. The primary tumor most commonly arises from the stomach (40–60 %), with small intestine and colon being the next two most common sites of primary disease. GISTs primarily metastasize to the liver and peritoneum. Rarer sites of metastasis include lymph nodes (usually in pediatric-type GIST), lung, and bone.

References

  1. 1.
    American Cancer Society: Gastrointestinal Stromal Tumor (GIST). http://www.cancer.org/acs/groups/cid/documents/webcontent/003103-pdf.pdf.
  2. 2.
    Joensuu H, et al. Gastrointestinal stromal tumour. Lancet. 2013;382:973–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Hirota S, et al. Gain-of-function mutations in c-kit in human gastrointestinal stromal tumors. Science. 1998;279(5350):577–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Kindblom LG, et al. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show characteristics of the interstitial cells of Cajal. Am J Pathol. 1998;152(5):1259–69.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sarlomo-Rikala M, et al. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol. 1998;11(8):728–34.PubMedGoogle Scholar
  6. 6.
    Corless CL, et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. J Clin Oncol. 2014;32(15):1563–70.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pardanani A, Tefferi A. Imatinib targets other than bcr/abl and their clinical relevance in myeloid disorders. Blood. 2004;104(7):1931–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Tuveson DA, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20(36):5054–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Joensuu H, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344:1052–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Blanke CD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26(4):626–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Verweij J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;264(9440):1127–34.CrossRefGoogle Scholar
  12. 12.
    Casali PG, et al. Imatinib mesylate in advanced Gastrointestinal Stromal Tumors (GIST): survival analysis of the EORTC ISG AGITG randomized trial in 946 patients. Eur J Cancer. 2005;(Suppl 3):abstract 711.Google Scholar
  13. 13.
    Le Cesne A, et al. Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. Lancet Oncol. 2010;11(10):942–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Demetri GD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Vadakara J, et al. Gastrointestinal stromal tumors management of metastatic disease and emerging therapies. Hematol Oncol Clin North Am. 2013;27(5):905–20.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Heinrich MC, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24(29):4764–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Debiec-Rychter M, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128(2):270–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Van Glabbeke MM, et al. Comparison of 2 doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors (GIST): a meta-analysis based on 1,640 patients. Presented at: American Society of Clinical Oncology 43rd Annual Meeting; June 1–5, 2007; Chicago, IL.Google Scholar
  19. 19.
    NCCN Task Force Report. Optimal management of patients with gastrointestinal stromal tumor (GIST)—update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw. 2007;5(2):S1–29.Google Scholar
  20. 20.
    Demetri GD, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinalstromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38.CrossRefPubMedGoogle Scholar
  21. 21.
    Demetri GD, et al. Complete longitudinal analyses of the randomized, placebo-controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumor following imatinib failure. Clin Cancer Res. 2012;18(11):3170–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    George S, et al. Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur J Cancer. 2009;45(11):1959–68.CrossRefPubMedGoogle Scholar
  23. 23.
    Heinrich MC, et al. Primary and secondary kinase geno-types correlate with the biological and clinical activity of sunitinib in imatinib- resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26:5352–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heinrich MC, et al. Sunitinib (SU) response in imatinib- resistant (IM-R) GIST correlates with KIT and PDGFRA mutation status. J Clin Oncol. 2006;24 Suppl 18:a9502.Google Scholar
  25. 25.
    Maki RG, et al. Results from a continuation trial of SU11248 in patients (pts) with imatinib (IM)-resistant gastrointestinal stromal tumor (GIST). Proc Am Soc Clin Oncol. 2005;9011.Google Scholar
  26. 26.
    Kang YK, et al. Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2013;14(12):1175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wilhelm SM, et al. Regorafenib (BAY 73–4506): a new oral multilines inhibitor of angiogenic, stromal, and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Demetri GD, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib: an international, multicentre, prospective, randomised, placebo-controlled phase 3 trial (GRID). Lancet. 2013;381(9863):295–302.CrossRefPubMedGoogle Scholar
  29. 29.
    Shah RR, et al. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf. 2013;36(7):491–503.CrossRefPubMedGoogle Scholar
  30. 30.
    Bauer S, Joensuu H. Emerging agents for the treatment of advanced, imatinib-resistant gastrointestinal stromal tumors: current status and future directions. Drugs. 2015;75(12):1323–34.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Blay JY, et al. Nilotinib versus imatinib as first-line therapy for patients with unresectable or metastatic gastrointestinal stromal tumours (ENESTg1): a randomised phase 3 trial. Lancet Oncol. 2015;16(5):550–60.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zalupski M, et al. Phase III comparison of doxorubicin and dacarbazine given by bolus versus infusion in patients with soft-tissue sarcomas: a Southwest Oncology Group study. J Natl Cancer Inst. 1991;83:926–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Antman K, et al. An intergroup phase III randomized study of doxorubicin and dacarbazine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. J Clin Oncol. 1993;11:1276–85.PubMedGoogle Scholar
  34. 34.
    Elias A. Response to mesna, doxorubicin, ifosfamide, and dacarbazine in 108 patients with metastatic or unresectable sarcoma and no prior chemotherapy. J Clin Oncol. 1989;7:1208–16.PubMedGoogle Scholar
  35. 35.
    Le Cesne A, et al. Randomized phase III study comparing conventional-dose doxorubicin plus ifosfamide versus high-dose doxorubicin plus ifosfamide plus recombinant human granulocyte-macrophage colony-stimulating factor in advanced soft tissue sarcomas. A trial of European Organization Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group. J Clin Oncol. 2000;18:2676–84.PubMedGoogle Scholar
  36. 36.
    Verweij J, et al. A randomized phase II study of docetaxel versus doxorubicin in first and second line chemotherapy for locally advanced or metastatic soft tissue sarcomas in adults: a study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J Clin Oncol. 2000;18:2081–6.PubMedGoogle Scholar
  37. 37.
    Goss G. Clinical and pathological characteristics of gastrointestinal stromal tumors. Proc ASCO. 2000;19:2203.Google Scholar
  38. 38.
    Edmondson J, et al. Contrast of response to D-MAP + sargramostim between patients with advance malignant gastrointestinal stromal tumors and patients with other leiomyosarcomas. Proc ASCO. 1999;18:541.Google Scholar
  39. 39.
    Blair SC, et al. Ifosfamide and etoposide in the treatment of advanced soft tissue sarcomas. Am J Clin Oncol. 1994;17:480–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Patel SR, et al. Phase II clinical investigation of gemcitabine in advanced soft tissue sarcomas and window evaluation of dose rate on gemcitabine triphosphate accumulation. J Clin Oncol. 2001;19:3483–9.PubMedGoogle Scholar
  41. 41.
    Nielsen OS, et al. Effect of high-dose ifosfamide in advanced soft tissue sarcomas. A multicentre phase II study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 2000;36:61–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Frustaci S, et al. Epirubicin and ifosfamide in advanced soft tissue sarcomas. Ann Oncol. 1993;4:669–72.PubMedGoogle Scholar
  43. 43.
    Balcerzak SP, et al. A phase II trial of paclitaxel in patients with advanced soft tissue sarcomas. A Southwest Oncology Group study. Cancer. 1995;76:2248–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Baratti D, et al. Peritoneal sarcomatosis: is there a subset of patients who may benefit from cytoreductive surgery and hyperthermic intraperitoneal chemotherapy? Ann Surg Oncol. 2010;17(12):3220–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Rossi CR, et al. Hyperthermic intraperitoneal intraoperative chemotherapy after cytoreductive surgery for the treatment of abdominal sarcomatosis. Cancer. 2004;100(9):1943–50.CrossRefPubMedGoogle Scholar
  46. 46.
    Bryan ML, et al. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in sarcomatosis from gastrointestinal stromal tumor. Am Surg. 2014;80(9):890–5.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Bonvalot S, et al. Randomized trial of cytoreduction followed by intraperitoneal chemotherapy versus cytoreduction alone in patients with peritoneal sarcomatosis. Eur J Surg Oncol. 2005;31(8):917–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Crosby JA, et al. Malignant gastrointestinal stromal tumors of the small intestine: a review of 50 cases from a prospective database. Ann Surg Oncol. 2001;8(1):50–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Knowlton C, et al. Radiotherapy in the treatment of gastrointestinal stromal tumor. Rare Tumors. 2011;3(4):e35.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pollack J, et al. Adjuvant radiotherapy for gastrointestinal stromal tumor of the rectum. Dig Dis Sci. 2001;46:268–72.CrossRefGoogle Scholar
  51. 51.
    Ricca L, et al. Tumori stromali gastrointestinali (GIST) a localiz-zazione rettale. Un nuovo caso e revisione della letteratura. Chir Ital. 2002;54:709–16.PubMedGoogle Scholar
  52. 52.
    Shioyama Y, et al. Long-term control for a retroperitoneal metastasis of malignant gastrointestinal stromal tumor after chemoradiotherapy and immunotherapy. Acta Oncol. 2001;40:102–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Choudhury A, et al. Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Cancer Ther. 2009;8(1):203–13.CrossRefPubMedGoogle Scholar
  54. 54.
    Boruban C, et al. Metastatic gastrointestinal stromal tumor with long-term response after treatment with concomitant radiotherapy and imatinib mesylate. Anticancer Drugs. 2007;18:969–72.PubMedGoogle Scholar
  55. 55.
    Ciresa M, et al. Molecularly targeted therapy and radiotherapy in the management of localized gastrointestinal stromal tumor (GIST) of the rectum: a case report. Tumori. 2009;95:236–9.PubMedGoogle Scholar
  56. 56.
    Tong CC, et al. Phase II trial of concurrent sunitinib and image-guided radiotherapy for oligometastases. PLoS One. 2012;7:e36979.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kao J, et al. Phase 1 study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitinib for patients with oligometastases: acute toxicity and preliminary response. Cancer. 2009;115:3571–80.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chen SW, et al. Phase 2 study of combined sorafenib and radiation therapy in patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2014;88:1041–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Hurwitz J, et al. The role of radiotherapy in metastatic gastrointestinal stromal tumour (GIST). Proceedings of the Connective Tissue Oncology Society. 2008. Abstract 35023.Google Scholar
  60. 60.
    Cuaron JJ, et al. External beam radiation therapy for locally advanced and metastatic gastrointestinal stromal tumors. Radiat Oncol. 2013;8(1):274.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Joensuu H, et al. Radiotherapy for GIST progressing during or after tyrosine kinase inhibitor therapy: a prospective study. Radiother Oncol. 2015;116(2):233–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Taremi M, et al. Upper abdominal malignancies: intensity-modulated radiation therapy. Front Radiat Ther Oncol. 2007;40:272–88.CrossRefPubMedGoogle Scholar
  63. 63.
    Corbin KS, et al. Considering the role of radiation therapy for gastrointestinal stromal tumor. Onco Targets Ther. 2014;7:713–8.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Nour AA, et al. Intensity modulated radiotherapy of upper abdominal malignancies: dosimetric comparison with 3D conformal radiotherapy and acute toxicity. Radiat Oncol. 2013;8(1):207.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Scaife CL, et al. Is there a role for surgery in patients with “unresectable” cKIT+ gastrointestinal stromal tumors treated with imatinib mesylate? Am J Surg. 2003;186:665–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Bauer S, et al. Resection of residual disease in patients with metastatic gastrointestinal stromal tumors responding to treatment with imatinib. Int J Cancer Journal international du cancer. 2005;117:316–25.CrossRefPubMedGoogle Scholar
  67. 67.
    Fairweather M, Raut CP. Surgical management of GIST and intra-abdominal visceral leiomyosarcomas. J Surg Oncol. 2015;111:562–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Raut CP, et al. Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J Clin Oncol. 2006;24:2325.CrossRefPubMedGoogle Scholar
  69. 69.
    Rutkowski P, et al. Surgical treatment of patients with initially inoperable and/or metastatic gastrointestinal stromal tumors (GIST) during therapy with imatinib mesylate. J Surg Oncol. 2006;93:304.CrossRefPubMedGoogle Scholar
  70. 70.
    Bonvalot S, et al. Impact of surgery on advanced gastrointestinal stromal tumors (GIST) in the imatinib era. Ann Surg Oncol. 2006;13:1596.CrossRefPubMedGoogle Scholar
  71. 71.
    Gronchi A, et al. Surgery of residual disease following molecular-targeted therapy with imatinib mesylate in advanced/metastatic GIST. Ann Surg. 2007;245:341.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    DeMatteo RP, et al. Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg. 2007;245:347.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Andtbacka RH, et al. Surgical resection of gastrointestinal stromal tumors after treatment with imatinib. Ann Surg Oncol. 2007;14:14.CrossRefPubMedGoogle Scholar
  74. 74.
    Al-Batran SE, et al. Focal progression in patients with gastrointestinal stromal tumors after initial response to imatinib mesylate: a three-center-based study of 38 patients. Gastric Cancer. 2007;10:145.CrossRefPubMedGoogle Scholar
  75. 75.
    Yeh CN, et al. Surgical management in metastatic gastrointestinal stromal tumor (GIST) patients after imatinib mesylate treatment. J Surg Oncol. 2010;102:599.CrossRefPubMedGoogle Scholar
  76. 76.
    Mussi C, et al. Post-imatinib surgery in advanced/metastatic GIST: is it worthwhile in all patients? Ann Oncol. 2010;21:403.CrossRefPubMedGoogle Scholar
  77. 77.
    Zaydfudim Z, et al. Role of operative therapy in treatment of metastatic gastrointestinal stromal tumors. J Surg Res. 2012;177(2):248–54.CrossRefPubMedGoogle Scholar
  78. 78.
    Bauer S, et al. Long-term follow-up of patients with GIST undergoing metastasectomy in the era of imatinib – analysis of prognostic factors (EORTC-STBSG collaborative study). Eur J Surg Oncol. 2014;40:412.CrossRefPubMedGoogle Scholar
  79. 79.
    Park SJ, et al. The role of surgical resection following imatinib treatment in patients with recurrent or metastatic gastrointestinal stromal tumors: results of propensity score analyses. Ann Surg Oncol. 2014;21:4211.CrossRefPubMedGoogle Scholar
  80. 80.
    Rubió-Casadevall J, et al. Role of surgery in patients with recurrent, metastatic, or unresectable locally advanced gastrointestinal stromal tumors sensitive to imatinib: a retrospective analysis of the Spanish Group for Research on Sarcoma (GEIS). Ann Surg Oncol. 2015;22:2948.CrossRefPubMedGoogle Scholar
  81. 81.
    An HJ, et al. The effects of surgical cytoreduction prior to imatinib therapy on the prognosis of patients with advanced GIST. Ann Surg Oncol. 2013;20:4212–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Raut CP, et al. Cytoreductive surgery in patients with metastatic gastrointestinal stromal tumor treated with sunitinib malate. Ann Surg Oncol. 2010;17(2):407–15.CrossRefPubMedGoogle Scholar
  83. 83.
    DeMatteo RP, et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 2000;231(1):51–8.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    DeMatteo RP, et al. Results of hepatic resection for sarcoma metastatic to liver. Ann Surg. 2001;234(4):540–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Nunobe S, et al. Surgery including liver resection for metastatic gastrointestinal stromal tumors or gastrointestinal leiomyosarcomas. Jpn J Clin Oncol. 2005;35(6):338–41.CrossRefPubMedGoogle Scholar
  86. 86.
    Shima Y, et al. Aggressive surgery for liver metastases from gastrointestinal stromal tumors. J Hepatobiliary Pancreat Surg. 2003;10(1):77–80.PubMedGoogle Scholar
  87. 87.
    de la Fuente SG, et al. A comparison between patients with gastrointestinal stromal tumours diagnosed with isolated liver metastases and liver metastases plus sarcomatosis. HPB. 2013;15(9):655–60.CrossRefPubMedGoogle Scholar
  88. 88.
    Pawlik TM, et al. Results of a single-center experience with resection and ablation for sarcoma metastatic to the liver. Arch Surg. 2006;141(6):537–43.CrossRefPubMedGoogle Scholar
  89. 89.
    Xia L, et al. Resection combined with imatinib therapy for liver metastases of gastrointestinal stromal tumors. Surg Today. 2010;40(10):936–42.CrossRefPubMedGoogle Scholar
  90. 90.
    Turley RS, et al. Hepatic resection for metastatic gastrointestinal stromal tumors in the tyrosine kinase inhibitor era. Cancer. 2012;118(14):3571–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Cananzi FCM, et al. Liver surgery in the multidisciplinary management of gastrointestinal stromal tumor. ANZ J Surg. 2014;84(1):937–42.CrossRefPubMedGoogle Scholar
  92. 92.
    Brudvik KW, et al. Survival after resection of gastrointestinal stromal tumor and sarcoma liver metastases in 146 patients. J Gastrointest Surg. 2015;19:1476–83.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhu J, et al. A long-term follow-up of the imatinib mesylate treatment for the patients with recurrent gastrointestinal stromal tumor (GIST): the liver metastasis and the outcome. BMC Cancer. 2010;10:199.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    The ESMO/European Sarcoma Network Working Group. Gastrointestinal stromal tumors: ESMO clinical practice guidelines. Ann Oncol. 2014;25 Suppl 3:iii21–6.CrossRefGoogle Scholar
  95. 95.
    Schima W, Kurtaran A. GIST: imaging diagnosis, staging, and response assessment. Wien Med Wochenschr. 2009;159(15–16):408–13.CrossRefPubMedGoogle Scholar
  96. 96.
    Stroobants S, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer. 2003;39:2012–20.CrossRefPubMedGoogle Scholar
  97. 97.
    Antoch G, et al. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med. 2004;45:357–65.PubMedGoogle Scholar
  98. 98.
    Shankar LK, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47(6):1059–66.PubMedGoogle Scholar
  99. 99.
    Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.CrossRefPubMedGoogle Scholar
  100. 100.
    Choi H, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25(13):1753–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Benjamin RS, et al. We should desist using RECIST, at least in GIST. J Clin Oncol. 2007;25(13):1760–4.CrossRefPubMedGoogle Scholar
  102. 102.
    Choi H, et al. Correlation of computerized tomography (CT) and proton emission tomography (PET) in patients with metastatic GIST treated at a single institution with imatinib mesylate. Proc Am Soc Clin Oncol. 2003;22:819. Abstract 3290.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • David A. Mahvi
    • 1
  • Emily Z. Keung
    • 1
  • Chandrajit P. Raut
    • 1
  1. 1.Department of SurgeryBrigham and Women’s Hospital, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA

Personalised recommendations