An Application Map for Industrial Cyber-Physical Systems

  • Sascha Julian OksEmail author
  • Albrecht Fritzsche
  • Kathrin M. Möslein
Part of the Springer Series in Wireless Technology book series (SSWT)


The potential transformation cyber-physical systems can bring to a broad variety of domains is widely discussed in academia and industry. Despite the expected benefits in the industrial domain of further automatization of production processes and the possibility to produce “batch size one” at large-scale production costs, the majority of organizations hesitate in the implementation of cyber-physical systems. This can be attributed to uncertainty decision makers feel, about how to choose right applications of cyber-physical systems and if chosen how to implement these applications to the unique and specific needs of their organization. To address this problem this chapter introduces an application map which includes the spheres smart factory, industrial smart data, industrial smart services, smart products, product-related smart data and product-related smart services. Based on this model, the decision makers are provided a scheme of application fields for utilizing cyber-physical architectures adjusted to their unique business situation.


Cyber-physical systems Cyber-physical production systems Internet of things Technology adoption Application map Change management 


  1. 1.
    acatech (ed) (2011) Cyber-physical systems-Innovationsmotor für Mobilität, Gesundheit Energie und Produktion., acatech POSITIONSpringer, HeidelbergGoogle Scholar
  2. 2.
    Ali ABMS, Azad S (2013) Demand forecasting in smart grid. In: Ali ABMS (ed) Smart grids—opportunities, developments, and trends. Springer, London, pp 135–150Google Scholar
  3. 3.
    Bock T, Linner T, Ikeda W (2012) Exoskeleton and humanoid robotic technology in construction and built environment. In: Zaier R (ed) The future of humanoid robots—research and applications. InTech, Rijeka, pp 111–146Google Scholar
  4. 4.
    Böhmann T, Leimeister JM, Möslein KM (2014) Service systems engineering—a field for future information systems research. Bus Inf Syst Eng (BISE) 6(2):73–79CrossRefGoogle Scholar
  5. 5.
    Brecher C, Jeschke S, Schuh G et al (2011) Integrative Produktionstechnik für Hochlohnländer. In: Brecher C (ed) Integrative Produktionstechnik für Hochlohnländer. Springer, Berlin, pp 17–82CrossRefGoogle Scholar
  6. 6.
    Bundesministerium für Bildung und Forschung (ed) (2014) Industrie 4.0-Innovationen für die Produktion von morgen. BMBFGoogle Scholar
  7. 7.
    Byoungsoo K, Minhyung K, Hyeon J (2014) Determinants of postadoption behaviors of mobile communications applications: a dual-model perspective. Int J Hum Comput Interact 30(7):547–559CrossRefGoogle Scholar
  8. 8. (2014). Accessed 14 Apr 2015
  9. 9.
    Fallenbeck N, Eckert C (2014) IT-Sicherheit und Cloud Computing. In: Bauernhansl T, ten Hompel M, Vogel-Heuser B (eds) Industrie 4.0 in Produktion, Automatisierung und Logistik. Springer, Wiesbaden, pp 397–431Google Scholar
  10. 10.
    Fortino G, Guerrieri A, Russo W, Savaglio C (2014) Middlewares for smart objects and smart environments: overview and comparison. In: Fortino G, Trunfio P (eds) Internet of things based on smart objects—technology, middleware and applications. Springer International Publishing, Heidelberg, pp 1–27CrossRefGoogle Scholar
  11. 11.
    Geisberger E, Broy M (eds) (2015) Living in a networked world—integrated research agenda cyber-physical systems (agendaCPS). acatech Study. Herbert Utz Verlag, MunichGoogle Scholar
  12. 12.
    Gutierrez A, Dreslinski RG, Wenisch TF et al (2011) Full-system analysis and characterization of interactive smartphone applications. In: IEEE international symposium on workload characterization, Austin, 6–8 November 2011, pp 81–90Google Scholar
  13. 13.
    Heinrich B, Linke P, Glöckler P (2015) Grundlagen Automatisierung-Sensorik, Regelung, Steuerung. Springer, WiesbadenGoogle Scholar
  14. 14. (2016). Accessed 17 Apr 2016
  15. 15.
    Jeschke S, Vossen R, Leisten I et al (2014) Industrie 4.0 als Treiber der demografischen Chancen. In: Jeschke S, Isenhardt I, Hees F, Henning K (eds) Automation, communication and cybernetics in science and engineering 2013/2014. Springer International Publishing, pp 75–85Google Scholar
  16. 16.
    Lee EA (2008) Cyber physical systems: design challenges. In: 11th IEEE international symposium on object/component/service-oriented real-time distributed computing, Orlando, 5–7 May 2008, pp 440–451Google Scholar
  17. 17.
    Levin SL, Schmidt S (2014) IPv4 to IPv6: challenges, solutions, and lessons. Telecommun Policy 38(11):1059–1068CrossRefGoogle Scholar
  18. 18.
    Liu SX (2016) Innovation design: made in China 2025. Des Manage Rev 27(1):52–58Google Scholar
  19. 19.
    Mahnke W, Leitner SH, Damm M (2009) OPC unified architecture. Springer, HeidelbergCrossRefGoogle Scholar
  20. 20. (2015). Accessed 30 Sept 2015
  21. 21.
    Manzei C, Schleupner L, Heinze R (eds) (2016) Industrie 4.0 im internationalen Kontext-Kernkonzepte, Ergebnisse, Trends. VDE, BerlinGoogle Scholar
  22. 22.
    Marwalder P (2011) Embedded system design: embedded systems foundations of cyber-physical systems. Springer, NetherlandsGoogle Scholar
  23. 23.
    Mühlhäuser M (2008) Smart products: an introduction. In: Mühlhäuser M, Ferscha A, Aitenbichler E (eds) Constructing ambient intelligence. Springer, Berlin, pp 158–164CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Oks SJ, Fritzsche A (2015) Importance of user role concepts for the implementation and operation of service systems based on cyber-physical architectures. In: Innteract conference, Chemnitz, 7–8 May 2015, pp 379–382Google Scholar
  26. 26.
    Pflaum A, Hupp J (2007) Auf dem Weg zum Internet der Dinge-das Versprechen innovativer Smart-Object-Technologien. In: Bullinger HJ, ten Hompel M (eds) Internet der Dinge. Springer, BerlinGoogle Scholar
  27. 27.
    Porter ME, Heppelmann JE (2014) How smart, connected products are transforming competition. Harv Bus Rev (HBR) 92(11):64–88Google Scholar
  28. 28.
    Purser S (2014) Standards for cyber security. Best Pract Comput Netw Def Incid Detect Response 35:97–106Google Scholar
  29. 29.
    Reichwald R, Piller F (2009) Interaktive Wertschöpfung-Open Innovation, Individualisierung und neue Formen der Arbeitsteilung. 2, vollständig überarbeitete und erweiterte Auflage. Gabler, WiesbadenGoogle Scholar
  30. 30.
    Sommer L (2015) Industrial revolution—industry 4.0: are german manufacturing SMEs the first victims of this revolution? J Ind Eng Manage (JIEM) 8(5):1512–1532Google Scholar
  31. 31.
    Thiel C, Thiel C (2015) Industry 4.0—challenges in anti-counterfeiting. In: Reimer H, Pohlmann N, Schneider W (eds) ISSE 2015—highlights of the information security solutions Europe 2015 conference. Springer, Wiesbaden, pp 111–120Google Scholar
  32. 32.
    Tolio T (ed) (2009) Design of flexible production systems: methodologies and tools. Springer, BerlinGoogle Scholar
  33. 33.
    VDI (2013) Thesen und Handlungsfelder-cyber-physical systems: Chancen und Nutzen aus Sicht der automationGoogle Scholar
  34. 34.
    Velamuri VK, Neyer A-K, Möslein KM (2011) Hybrid value creation: a systematic review of an evolving research area. J für Betriebswirtschaft (JfB) 61(1):3–35CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Sascha Julian Oks
    • 1
    Email author
  • Albrecht Fritzsche
    • 1
  • Kathrin M. Möslein
    • 1
    • 2
  1. 1.Chair of Information Systems I, Innovation and Value CreationFriedrich-Alexander-University of Erlangen-NurembergNurembergGermany
  2. 2.Center for Leading Innovation and Cooperation (CLIC)HHL Leipzig Graduate School of ManagementLeipzigGermany

Personalised recommendations