Advertisement

Short Bowel Syndrome: Pharmacological Improvement of Bowel Function and Adaptation

  • Palle Bekker JeppesenEmail author
Chapter

Abstract

By presenting the pathophysiological changes in intestinal absorption following intestinal resection, the basis for pharmacological improvement of bowel function and adaptation is provided. In this chapter, the patient and treatment effect heterogeneity regarding conventional pharmacological and newer mediators of intestinal adaptation in short bowel syndrome (SBS) patients is presented. The more frequent use of metabolic balance studies to document treatment effects is advocated in the clinical setting in order to ensure the long-term clinical efficacy in the individual patients. Centres prescribing the newer hormonal mediators of intestinal adaptation should have the ability and the facilities to objectively evaluate and balance the benefit and clinical meaningfulness of the interventions versus the inconveniences, adverse effects, potential risks and cost.

Keywords

Parenteral Support Short Bowel Syndrome Faecal Excretion Intestinal Failure Intestinal Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Abd. Dist

Abdominal distension

Abd. Pain

Abdominal pain

BID

Twice daily

CD

Crohn’s Disease

EJIS

End jejunostomy or ileostomy

GH

Growth hormone

GI

Gastrointestinal

GLP

Glucagon-like peptide

Hab

Habitual

HCLF

High carbohydrate low fat

HPN

Home parenteral nutrition

IF

Intestinal failure

INS

Intestinal insufficiency

IRA

Ileorectal anastomosis

ITA

Ileotransverse anastomosis

JRA

Jejuno-rectal anastomosis

Mth

Month

NM

Not measured

NR

Not reported

NS

Non-significant

OD

Once daily

OLCS

Open-label case series

ORS

Oral rehydration solutions

PPI

Proton-pump inhibitor

PS

Parenteral support

RCT

Randomised controlled trial

SB

Small bowel

SBS

Short bowel syndrome

TID

Three times daily

Unk

Unknown

y

Years

Δ

Compared to baseline

References

  1. 1.
    Kasper H. Faecal fat excretion, diarrhea, and subjective complaints with highly dosed oral fat intake. Digestion. 1970;3(6):321–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Jeppesen PB. Spectrum of short bowel syndrome in adults: intestinal insufficiency to intestinal failure. J Parenter Enteral Nutr. 2014;38(1 Suppl):8S–13.CrossRefGoogle Scholar
  3. 3.
    Pironi L, Arends J, Baxter J, Bozzetti F, Pelaez RB, Cuerda C, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr. 2015;34(2):171–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Hofmann AF, Poley JR. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology. 1972;62(5):918–34.PubMedGoogle Scholar
  5. 5.
    Malagelada JR, DiMagno EP, Summerskill WH, Go VL. Regulation of pancreatic and gallbladder functions by intraluminal fatty acids and bile acids in man. J Clin Invest. 1976;58(2):493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ziegler TR, Cole CR. Small bowel bacterial overgrowth in adults: a potential contributor to intestinal failure. Curr Gastroenterol Rep. 2007;9(6):463–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Cole CR, Ziegler TR. Small bowel bacterial overgrowth: a negative factor in gut adaptation in pediatric SBS. Curr Gastroenterol Rep. 2007;9(6):456–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Jeppesen PB, Hartmann B, Thulesen J, Hansen BS, Holst JJ, Poulsen SS, et al. Elevated plasma glucagon-like peptide 1 and 2 concentrations in ileum resected short bowel patients with a preserved colon. Gut. 2000;47(3):370–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jeppesen PB, Hartmann B, Hansen BS, Thulesen J, Holst JJ, Mortensen PB. Impaired meal stimulated glucagon-like peptide 2 response in ileal resected short bowel patients with intestinal failure. Gut. 1999;45(4):559–63.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jeppesen PB, Mortensen PB. Intestinal failure defined by measurements of intestinal energy and wet weight absorption. Gut. 2000;46(5):701–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lal S, Teubner A, Shaffer JL. Review article: intestinal failure. Aliment Pharmacol Ther. 2006;24(1):19–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Nordgaard I, Hansen BS, Mortensen PB. Importance of colonic support for energy absorption as small- bowel failure proceeds. Am J Clin Nutr. 1996;64(2):222–31.PubMedGoogle Scholar
  13. 13.
    Hill GL, Goligher JC, Smith AH, Mair WS. Long term changes in total body water, total exchangable sodium and total body potassium before and after ileostomy. Br J Surg. 1975;62(7):DNLB.Google Scholar
  14. 14.
    Ng DH, Pither CA, Wootton SA, Stroud MA. The’not so short-bowel syndrome’: potential health problems in patients with an ileostomy. Colorectal Dis. 2013;15(9):1154–61.PubMedGoogle Scholar
  15. 15.
    Williams NS, Evans P, King RF. Gastric acid secretion and gastrin production in the short bowel syndrome. Gut. 1985;26(9):914–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Heizer WD, Cleveland CR, Iber FL. Gastric inactivation of pancreatic supplements. Bull Johns Hopkins Hosp. 1965;116:261–5.PubMedGoogle Scholar
  17. 17.
    Go VL, Poley JR, Hofmann AF, Summerskill WH. Disturbances in fat digestion induced by acidic jejunal pH due to gastric hypersecretion in man. Gastroenterology. 1970;58(5):638–46.PubMedGoogle Scholar
  18. 18.
    Houben GM, Hooi J, Hameeteman W, Stockbrugger RW. Twenty-four-hour intragastric acidity: 300 mg ranitidine b.d., 20 mg omeprazole o.m., 40 mg omeprazole o.m. vs. placebo. Aliment Pharmacol Ther. 1995;9(6):649–54.CrossRefPubMedGoogle Scholar
  19. 19.
    Cortot A, Fleming CR, Malagelada JR. Improved nutrient absorption after cimetidine in short-bowel syndrome with gastric hypersecretion. N Engl J Med. 1979;300(2):79–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Murphy Jr JP, King DR, Dubois A. Treatment of gastric hypersecretion with cimetidine in the short- bowel syndrome. N Engl J Med. 1979;300(2):80–1.CrossRefPubMedGoogle Scholar
  21. 21.
    Aly A, Barany F, Kollberg B, Monsen U, Wisen O, Johansson C. Effect of an H2-receptor blocking agent on diarrhoeas after extensive small bowel resection in Crohn’s disease. Acta Med Scand. 1980;207(1–2):119–22.PubMedGoogle Scholar
  22. 22.
    Jacobsen O, Ladefoged K, Stage JG, Jarnum S. Effects of cimetidine on jejunostomy effluents in patients with severe short-bowel syndrome. Scand J Gastroenterol. 1986;21(7):824–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Nightingale JM, Walker ER, Farthing MJ, Lennard Jones JE. Effect of omeprazole on intestinal output in the short bowel syndrome. Aliment Pharmacol Ther. 1991;5(4):405–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Jeppesen PB, Staun M, Tjellesen L, Mortensen PB. Effect of intravenous ranitidine and omeprazole on intestinal absorption of water, sodium, and macronutrients in patients with intestinal resection. Gut. 1998;43(6):763–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gyr KE, Whitehouse I, Beglinger C, Kohler E, Dettwiler S, Fried M. Human pharmacological effects of SMS 201-995 on gastric secretion. Scand J Gastroenterol Suppl. 1986;119:96–102.CrossRefPubMedGoogle Scholar
  26. 26.
    Creutzfeldt W, Lembcke B, Folsch UR, Schleser S, Koop I. Effect of somatostatin analogue (SMS 201-995, Sandostatin) on pancreatic secretion in humans. Am J Med. 1987;82(5B):49–54.CrossRefPubMedGoogle Scholar
  27. 27.
    Reichlin S. Somatostatin (second of two parts). N Engl J Med. 1983;309(25):1556–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Lembcke B, Creutzfeldt W, Schleser S, Ebert R, Shaw C, Koop I. Effect of the somatostatin analogue sandostatin (SMS 201-995) on gastrointestinal, pancreatic and biliary function and hormone release in normal men. Digestion. 1987;36(2):108–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Dueno MI, Bai JC, Santangelo WC, Krejs GJ. Effect of somatostatin analog on water and electrolyte transport and transit time in human small bowel. Dig Dis Sci. 1987;32(10):1092–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Krejs GJ, Browne R, Raskin P. Effect of intravenous somatostatin on jejunal absorption of glucose, amino acids, water, and electrolytes. Gastroenterology. 1980;78(1):26–31.PubMedGoogle Scholar
  31. 31.
    Fuessl HS, Carolan G, Williams G, Bloom SR. Effect of a long-acting somatostatin analogue (SMS 201-995) on postprandial gastric emptying of 99mTc-tin colloid and mouth-to-caecum transit time in man. Digestion. 1987;36(2):101–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Davis GR, Camp RC, Raskin P, Krejs GJ. Effect of somatostatin infusion on jejunal water and electrolyte transport in a patient with secretory diarrhea due to malignant carcinoid syndrome. Gastroenterology. 1980;78(2):346–9.PubMedGoogle Scholar
  33. 33.
    Dharmsathaphorn K, Gorelick FS, Sherwin RS, Cataland S, Dobbins JW. Somatostatin decreases diarrhea in patients with the short-bowel syndrome. J Clin Gastroenterol. 1982;4(6):521–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Williams NS, Cooper JC, Axon AT, King RF, Barker M. Use of a long acting somatostatin analogue in controlling life threatening ileostomy diarrhoea. Br Med J (Clin Res Ed). 1984;289(6451):1027–8.CrossRefGoogle Scholar
  35. 35.
    Rodrigues CA, Lennard Jones JE, Thompson DG, Farthing MJ. The effects of octreotide, soy polysaccharide, codeine and loperamide on nutrient, fluid and electrolyte absorption in the short-bowel syndrome. Aliment Pharmacol Ther. 1989;3(2):159–69.CrossRefPubMedGoogle Scholar
  36. 36.
    Nightingale JM, Walker ER, Burnham WR, Farthing MJ, Lennard Jones JE. Octreotide (a somatostatin analogue) improves the quality of life in some patients with a short intestine. Aliment Pharmacol Ther. 1989;3(4):367–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Ladefoged K, Christensen KC, Hegnhoj J, Jarnum S. Effect of a long acting somatostatin analogue SMS 201-995 on jejunostomy effluents in patients with severe short bowel syndrome. Gut. 1989;30(7):943–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Keefe SJ, Peterson ME, Fleming CR. Octreotide as an adjunct to home parenteral nutrition in the management of permanent end-jejunostomy syndrome. JPEN J Parenter Enteral Nutr. 1994;18(1):26–34.CrossRefPubMedGoogle Scholar
  39. 39.
    O’Keefe SJ, Haymond MW, Bennet WM, Oswald B, Nelson DK, Shorter RG. Long-acting somatostatin analogue therapy and protein metabolism in patients with jejunostomies. Gastroenterology. 1994;107(2):379–88.CrossRefPubMedGoogle Scholar
  40. 40.
    Nehra V, Camilleri M, Burton D, Oenning L, Kelly DG. An open trial of octreotide long-acting release in the management of short bowel syndrome. Am J Gastroenterol. 2001;96(5):1494–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Rosenberg L, Brown RA. Sandostatin in the management of nonendocrine gastrointestinal and pancreatic disorders: a preliminary study. Can J Surg. 1991;34(3):223–9.PubMedGoogle Scholar
  42. 42.
    Shaffer JL, O’Hanrahan T, Rowntree S, Shipley K, Irving MH. Does somatostatin analogue (SMS 201-995) reduce high output stoma effluent? A controlled trial. Gut. 1988;29:A1432–3.Google Scholar
  43. 43.
    Gilsdorf RB, Gilles P, Gigliotti LM. Somatostatin effect on gastrointestinal losses in patients with short bowel syndrome. A.S.P.E.N. 13th clinical congress abstracts. 1989. p. 478.Google Scholar
  44. 44.
    Lucey MR, Yamada T. Biochemistry and physiology of gastrointestinal somatostatin. Dig Dis Sci. 1989;34(3 Suppl):5S–13.CrossRefPubMedGoogle Scholar
  45. 45.
    Bass BL, Fischer BA, Richardson C, Harmon JW. Somatostatin analogue treatment inhibits post-resectional adaptation of the small bowel in rats. Am J Surg. 1991;161(1):107–11.CrossRefPubMedGoogle Scholar
  46. 46.
    Sundaram U. Mechanism of intestinal absorption. Effect of clonidine on rabbit ileal villus and crypt cells. J Clin Invest. 1995;95(5):2187–94.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    De PF, Giaroni C, Cosentino M, Lecchini S, Frigo G. Adrenergic mechanisms in the control of gastrointestinal motility: from basic science to clinical applications. Pharmacol Ther. 1996;69(1):59–78.CrossRefGoogle Scholar
  48. 48.
    Scholz J, Bause H, Reymann A, Durig M. [Treatment with clonidine in a case of the short bowel syndrome with therapy-refractory diarrhea] Zur Behandlung mit Clonidin bei kurzdarmsyndrombedingter therapierefraktarer Diarrho. Anasthesiol Intensivmed Notfallmed Schmerzther. 1991;26(5):265–9.CrossRefPubMedGoogle Scholar
  49. 49.
    McDoniel K, Taylor B, Huey W, Eiden K, Everett S, Fleshman J, et al. Use of clonidine to decrease intestinal fluid losses in patients with high-output short-bowel syndrome. JPEN J Parenter Enteral Nutr. 2004;28(4):265–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Buchman AL, Fryer J, Wallin A, Ahn CW, Polensky S, Zaremba K. Clonidine reduces diarrhea and sodium loss in patients with proximal jejunostomy: a controlled study. JPEN J Parenter Enteral Nutr. 2006;30(6):487–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Tytgat GN. Letter: loperamide and ileostomy output. Br Med J. 1975;3(5981):DNLB.Google Scholar
  52. 52.
    Tytgat GN, Huibregtse K, Meuwissen SG. Loperamide in chronic diarrhea and after ileostomy: a placebo- controlled double-blind cross-over study. Arch Chir Neerl. 1976;28(1):13–20.PubMedGoogle Scholar
  53. 53.
    Tytgat GN, Huibregtse K, Dagevos J, van den Ende A. Effect of loperamide on fecal output and composition in well- established ileostomy and ileorectal anastomosis. Am J Dig Dis. 1977;22(8):669–76.CrossRefPubMedGoogle Scholar
  54. 54.
    Mainguet P, Fiasse R. Double-blind placebo-controlled study of loperamide (Imodium) in chronic diarrhoea caused by ileocolic disease or resection. Gut. 1977;18(7):575–9.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Newton CR. Effect of codeine phosphate, Lomotil, and Isogel on ileostomy function. Gut. 1978;19(5):377–83.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    King RF, Norton T, Hill GL. A double-blind crossover study of the effect of loperamide hydrochloride and codeine phosphate on ileostomy output. Aust N Z J Surg. 1982;52(2):121–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Tytgat GN, Huibregtse K. Loperamide and ileostomy output–placebo-controled double-blind crossover study. Br Med J. 1975;2:667–8.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Byrne TA, Morrissey TB, Nattakom TV, Ziegler TR, Wilmore DW. Growth hormone, glutamine, and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. JPEN J Parenter Enteral Nutr. 1995;19(4):296–302.CrossRefPubMedGoogle Scholar
  59. 59.
    Byrne TA, Wilmore DW, Iyer K, Dibaise J, Clancy K, Robinson MK, et al. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome: a prospective, randomized, placebo-controlled, double-blind clinical trial. Ann Surg. 2005;242(5):655–61.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Scolapio JS, Camilleri M, Fleming CR, Oenning LV, Burton DD, Sebo TJ, et al. Effect of growth hormone, glutamine, and diet on adaptation in short-bowel syndrome: a randomized, controlled study. Gastroenterology. 1997;113(4):1074–81.CrossRefPubMedGoogle Scholar
  61. 61.
    Scolapio JS. Effect of growth hormone, glutamine, and diet on body composition in short bowel syndrome: a randomized, controlled study. JPEN J Parenter Enteral Nutr. 1999;23(6):309–13.Google Scholar
  62. 62.
    Szkudlarek J, Jeppesen PB, Mortensen PB. Effect of high dose growth hormone with glutamine and no change in diet on intestinal absorption in short bowel patients: a randomised, double blind, crossover, placebo controlled study. Gut. 2000;47(2):199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jeppesen PB, Szkudlarek J, Hoy CE, Mortensen PB. Effect of high-dose growth hormone and glutamine on body composition, urine creatinine excretion, fatty acid absorption, and essential fatty acids status in short bowel patients: a randomized, double-blind, crossover, placebo-controlled study. Scand J Gastroenterol. 2001;36(1):48–54.PubMedGoogle Scholar
  64. 64.
    Seguy D, Vahedi K, Kapel N, Souberbielle JC, Messing B. Low-dose growth hormone in adult home parenteral nutrition-dependent short bowel syndrome patients: a positive study. Gastroenterology. 2003;124(2):293–302.CrossRefPubMedGoogle Scholar
  65. 65.
    Ellegard L, Bosaeus I, Nordgren S, Bengtsson BA. Low-dose recombinant human growth hormone increases body weight and lean body mass in patients with short bowel syndrome. Ann Surg. 1997;225(1):88–96.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Byrne TA, Persinger RL, Young LS, Ziegler TR, Wilmore DW. A new treatment for patients with short-bowel syndrome. Growth hormone, glutamine, and a modified diet. Ann Surg. 1995;222(3):243–54.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wales PW, Nasr A, de Silva N, Yamada J. Human growth hormone and glutamine for patients with short bowel syndrome. Cochrane Database Syst Rev. 2010;(6):CD006321.Google Scholar
  68. 68.
    Johannsson G, Sverrisdottir YB, Ellegard L, Lundberg PA, Herlitz H. GH increases extracellular volume by stimulating sodium reabsorption in the distal nephron and preventing pressure natriuresis. J Clin Endocrinol Metab. 2002;87(4):1743–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Parekh NR, Steiger E. Criteria for the use of recombinant human growth hormone in short bowel syndrome. Nutr Clin Pract. 2005;20(5):503–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Liu X, Murali SG, Holst JJ, Ney DM. Enteral nutrients potentiate the intestinotrophic action of glucagon-like peptide-2 in association with increased insulin-like growth factor-I responses in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R1794–802.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Jeppesen PB, Hartmann B, Thulesen J, Graff J, Lohmann J, Hansen BS, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120(4):806–15.CrossRefPubMedGoogle Scholar
  72. 72.
    Jeppesen PB, Sanguinetti EL, Buchman A, Howard L, Scolapio JS, Ziegler TR, et al. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut. 2005;54(9):1224–31.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O’Keefe SJ. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60(7):902–14.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jeppesen PB, Pertkiewicz M, Messing B, Iyer K, Seidner DL, O’Keefe SJ, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143(6):1473–81.CrossRefPubMedGoogle Scholar
  75. 75.
    Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon- like peptide 2. Proc Natl Acad Sci U S A. 1996;93(15):7911–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bremholm L, Hornum M, Henriksen BM, Larsen S, Holst JJ. Glucagon-like peptide-2 increases mesenteric blood flow in humans. Scand J Gastroenterol. 2009;44(3):314–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Bremholm L, Hornum M, Andersen UB, Hartmann B, Holst JJ, Jeppesen PB. The effect of Glucagon-Like Peptide-2 on mesenteric blood flow and cardiac parameters in end-jejunostomy short bowel patients. Regul Pept. 2011;168(1–3):32–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Hoyerup P, Hellstrom PM, Schmidt PT, Brandt CF, Askov-Hansen C, Mortensen PB, et al. Glucagon-like peptide-2 stimulates mucosal microcirculation measured by laser Doppler flowmetry in end-jejunostomy short bowel syndrome patients. Regul Pept. 2013;180:12–6.CrossRefPubMedGoogle Scholar
  79. 79.
    Cani PD, Possemiers S, Van de WT, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ivory CP, Wallace LE, McCafferty DM, Sigalet DL. Interleukin-10-independent anti-inflammatory actions of glucagon-like peptide 2. Am J Physiol Gastrointest Liver Physiol. 2008;295(6):G1202–10.CrossRefPubMedGoogle Scholar
  81. 81.
    Sigalet DL, Wallace LE, Holst JJ, Martin GR, Kaji T, Tanaka H, et al. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):G211–21.CrossRefPubMedGoogle Scholar
  82. 82.
    Jeppesen PB, Lund P, Gottschalck IB, Nielsen HB, Holst JJ, Mortensen J, et al. Short bowel patients treated for two years with glucagon-like Peptide 2: effects on intestinal morphology and absorption, renal function, bone and body composition, and muscle function. Gastroenterol Res Pract. 2009;2009:616054.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45(5):833–42.CrossRefPubMedGoogle Scholar
  84. 84.
    O’Keefe SJ, Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B. Safety and efficacy of teduglutide after 52 weeks of treatment in patients with Short Bowel Syndrome intestinal failure. Clin Gastroenterol Hepatol. 2013;17.Google Scholar
  85. 85.
    Sueyoshi R, Woods Ignatoski KM, Okawada M, Hartmann B, Holst J, Teitelbaum DH. Stimulation of intestinal growth and function with DPP4 inhibition in a mouse short bowel syndrome model. Am J Physiol Gastrointest Liver Physiol. 2014;307(4):G410–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Okawada M, Holst JJ, Teitelbaum DH. Administration of a dipeptidyl peptidase IV inhibitor enhances the intestinal adaptation in a mouse model of short bowel syndrome. Surgery. 2011;150(2):217–23.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kunkel D, Basseri B, Low K, Lezcano S, Soffer EE, Conklin JL, et al. Efficacy of the glucagon-like peptide-1 agonist exenatide in the treatment of short bowel syndrome. Neurogastroenterol Motil. 2011;23(8):739-e328.CrossRefPubMedGoogle Scholar
  88. 88.
    Madsen KB, Askov-Hansen C, Naimi RM, Brandt CF, Hartmann B, Holst JJ, et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1 + GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul Pept. 2013;184:30–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of GastroenterologyRigshospitaletCopenhagenDenmark

Personalised recommendations