Intestinal Failure in Children

  • Olivier GouletEmail author
  • Florence Lacaille
  • Cécile Lambe


Intestinal failure (IF) is a condition in which severe intestinal malabsorption requires parenteral nutrition (PN). Causes of protracted intestinal failure include short bowel syndrome (SBS), congenital diseases of enterocyte development (CDED), and severe motility disorders (total or subtotal aganglionosis or chronic intestinal pseudo-obstruction syndrome). IF can result in “nutritional failure,” defined as the incapacity to continue to feed a child by using PN. Today, intestinal failure-associated liver disease (IFALD) is the most common cause of nutritional failure, but catheter-related sepsis and extensive vascular thrombosis may also jeopardize the use of long-term PN. For a child with nutritional failure, intestinal transplantation (ITx), often in the form of a composite visceral graft, offers the only option for long-term survival. The management of IF requires a multidisciplinary approach. There have been a number of recent advances in both medical and surgical treatments of IF. In particular, new intestinal lengthening techniques and the use of parenteral nutrition formula rich in fish oil have both resulted in decreased rates of severe complications of IF and its treatment. In addition, improved awareness of the risks and benefits of ITx have resulted in better patient selection, and ultimately in improved patient survival, leading to restrict the indication to ITx only to patients with nutritional failure with no other chance to survive.


Intestinal failure Children Parenteral nutrition Short bowel syndrome Congenital enteropathy Intestinal pseudo-obstruction syndrome Intestinal failure-associated liver disease Home parenteral nutrition Intestinal transplantation 



Amino acid-based formulas


Catheter-related sepsis


Cholestatic liver disease


Chronic intestinal pseudo-obstruction syndrome


Congenital sodium diarrhea


Congenital diseases of enterocyte development


Continuous tube feeding


Enteral tube feeding


Epidermal growth factor


Essential fatty acid




Glucagon-like peptide 2


Human milk


Ileocecal valve


Insulin-like growth factor-1


Intestinal failure


Intestinal failure-associated liver disease


Intestinal transplantation


Intravenous lipid emulsions


Ligament of Treitz


Longitudinal intestinal lengthening and tailoring


Medium-chain triglyceride


Microvillus inclusion disease


Oral feeding


Parenteral nutrition


Polyunsaturated fatty acid


Recombinant human growth hormone


Serial transverse enteroplasty technique


Short bowel syndrome


Short-chain fatty acid


Small intestinal bacterial overgrowth


Total intestinal aganglionosis


Tufting enteropathy


  1. 1.
    Goulet O, Ruemmele F. Causes and management of intestinal failure in children. Gastroenterology. 2006;130(2 Suppl 1):S16–28.CrossRefPubMedGoogle Scholar
  2. 2.
    Bailly-Botuha C, Colomb V, Thioulouse E, et al. Plasma citrulline concentration reflects enterocyte mass in children with short bowel syndrome. Pediatr Res. 2009;65:559–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Kaufman SS, Pehlivanova M, Fennelly EM, et al. Predicting liver failure in parenteral nutrition-dependent short bowel syndrome of infancy. J Pediatr. 2010;156:580–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Suita S, Yamanouchi T, Masumoto K, Ogita K, Nakamura M, Taguchi S. Changing profile of parenteral nutrition in pediatric surgery: a 30-year experience at one institute. Surgery. 2002;131(1 Suppl):S275–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Hermans D, Talbotec C, Lacaille F, Goulet O, Ricour C, Colomb V. Early central catheter infections may contribute to hepatic fibrosis in children receiving long-term parenteral nutrition. J Pediatr Gastroenterol Nutr. 2007;44:459–63.CrossRefPubMedGoogle Scholar
  6. 6.
    D’Antiga L, Goulet O. Intestinal failure in children: the European view. J Pediatr Gastroenterol Nutr. 2013;56:118–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Duro D, Kalish LA, Johnston P, et al. Risk factors for intestinal failure in infants with necrotizing enterocolitis: a Glaser Pediatric Research Network study. J Pediatr. 2010;157:203–208.e1.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Touloukian RJ, Smith GJ. Normal intestinal length in preterm infants. J Pediatr Surg. 1983;18:720–3.CrossRefPubMedGoogle Scholar
  9. 9.
    Quiros-Tejeira RE, Ament ME, Reyen L, et al. Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr. 2004;145:157–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Spencer AU, Neaga A, West B, et al. Pediatric short bowel syndrome: redefining predictors of success. Ann Surg. 2005;242:403–9.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sala D, Chomto S, Hill S. Long-term outcomes of short bowel syndrome requiring long-term/home intravenous nutrition compared in children with gastroschisis and those with volvulus. Transplant Proc. 2010;42:5–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Goulet O, Baglin-Gobet S, Talbotec C, et al. Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children. Eur J Pediatr Surg. 2005;15:95–101.CrossRefPubMedGoogle Scholar
  13. 13.
    Wales PW, Christison-Lagay ER. Short bowel syndrome: epidemiology and etiology. Semin Pediatr Surg. 2010;19:3–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Goulet O, Olieman J, Ksiazyk J, Spolidoro J, Tibboe D, Köhler H, Yagci RV, Falconer J, Grimble G, Beattie RM. Neonatal short bowel syndrome as a model of intestinal failure: physiological background for enteral feeding. Clin Nutr. 2013;32:162–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Parvadia JK, Keswani SG, Vaikunth S, et al. Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent. Am J Physiol Gastrointest Liver Physiol. 2007;293:G591–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Helmrath MA, Shin CE, Fox JW, et al. Adaptation after small bowel resection is attenuated by sialoadenectomy: the role for endogenous epidermal growth factor. Surgery. 1998;124:848–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Olieman JF, Penning C, Ijsselstijn H, et al. Enteral nutrition in children with short-bowel syndrome: current evidence and recommendations for the clinician. J Am Diet Assoc. 2010;110:420–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Donovan SM. Role of human milk components in gastrointestinal development: current knowledge and future Needs. J Pediatr. 2006;149:S49–61.CrossRefGoogle Scholar
  19. 19.
    Cummins AG, Thompson FM. Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut. 2002;51:748–54.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    de Boissieu D, Dupont C. Allergy to extensively hydrolyzed cow's milk proteins in infants: safety and duration of amino acid-based formula. J Pediatr. 2002;141:271–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Andorsky DJ, Lund DP, Lillehei CW, et al. Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr. 2001;139:27–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Bines J, Francis D, Hill D. Reducing parenteral requirement in children with short bowel syndrome: impact of an amino acid-based complete infant formula. J Pediatr Gastroenterol Nutr. 1998;26:123–8.CrossRefPubMedGoogle Scholar
  23. 23.
    De Greef E, Mahler T, Janssen A, et al. The influence of neocate in paediatric short Bowel syndrome on PN weaning. J Nutr Metab. 2010;2010. pii: 297575.Google Scholar
  24. 24.
    Goulet O, Colomb-Jung V, Joly F. Role of the colon in short bowel syndrome and intestinal transplantation. J Pediatr Gastroenterol Nutr. 2009;48 Suppl 2:S66–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Gupte GL, Beath SV, Kelly DA, et al. Current issues in the management of intestinal failure. Arch Dis Child. 2006;91:259–64.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats. Gastroenterology. 1997;112:792–802.CrossRefPubMedGoogle Scholar
  27. 27.
    Bartholome AL, Albin DM, Baker DH, Holst JJ, Tappenden KA. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets. JPEN J Parenter Enteral Nutr. 2004;28:210–22.CrossRefPubMedGoogle Scholar
  28. 28.
    Koruda MJ, Rolandelli RH, Settle RG, Zimmaro DM, Rombeau JL. Effect of parenteral nutrition supplemented with short-chain fatty acids on adaptation to massive small bowel resection. Gastroenterology. 1988;95:715–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Nordgaard I, Hansen BS, Mortensen PB. Colon as a digestive organ in patients with short bowel. Lancet. 1994;343:373–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Joly F, Mayeur C, Messing B, Lavergne-Slove A, Cazals-Hatem D, Noordine ML, et al. Morphological adaptation with preserved proliferation/transporter content in the colon of patients with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2009;297:G116–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Kaneko T, Bando Y, Kurihara H, Satomi K, Nonoyama K, Matsuura N. Fecal microflora in a patient with short-bowel syndrome and identification of dominant lactobacilli. J Clin Microbiol. 1997;35:3181–5.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Davidovics ZH, Carter BA, Luna RA, Hollister EB, Shulman RJ, Versalovic J. The fecal microbiome in pediatric patients with short Bowel syndrome. JPEN J Parenter Enteral Nutr. 2015. pii: 0148607115591216.Google Scholar
  33. 33.
    Engstrand Lilja H, Wefer H, Nyström N, Finkel Y, Engstrand L. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome. 2015;3:18. doi: 10.1186/s40168-015-0084-7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wales PW, de Silva N, Kim JH, Lecce L, Sandhu A, Moore AM. Neonatal short bowel syndrome: a cohort study. J Pediatr Surg. 2005;40:755–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Olieman JF, Poley MJ, Gischler SJ, Penning C, Escher JC, van den Hoonaard TL, van Goudoever JB, Bax NM, Tibboel D, IJsselstijn H. Interdisciplinary management of infantile short bowel syndrome: resource consumption, growth, and nutrition. J Pediatr Surg. 2010;45:490–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Husebye E. The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol Motil. 1999;11:141–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Cole CR, Ziegler TR. Small bowel bacterial overgrowth: a negative factor in gut adaptation in pediatric SBS. Curr Gastroenterol Rep. 2007;9:456–62.CrossRefPubMedGoogle Scholar
  38. 38.
    O'Keefe SJ. Bacterial overgrowth and liver complications in short bowel intestinal failure patients. Gastroenterology. 2006;130(2 Suppl 1):S67–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Quigley EM. Bacteria: a new player in gastrointestinal motility disorders–infections, bacterial overgrowth, and probiotics. Gastroenterol Clin North Am. 2007;36:735–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Willis TC, Carter BA, Rogers SP, Hawthorne KM, Hicks PD, Abrams SA. High rates of mortality and morbidity occur in infants with parenteral nutrition-associated cholestasis. JPEN J Parenter Enteral Nutr. 2010;34:32–7. Comment in: JPEN J Parenter Enteral Nutr. 2010;34:94–5.Google Scholar
  41. 41.
    Cole CR, Frem JC, Schmotzer B, et al. The rate of bloodstream infection is high in infants with short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J Pediatr. 2010;156:941–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Moseley RH. Sepsis and cholestasis. Clin Liver Dis. 2004;8:83–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Santos AA, Wilmore DW. The systemic inflammatory response: perspective of human endotoxemia. Shock. 1996;6 Suppl 1:S50–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Pastor CM, Suter PM. Hepatic hemodynamics and cell functions in human and experimental sepsis. Anesth Analg. 1999;89:344–52.PubMedGoogle Scholar
  45. 45.
    Jones A, Selby PJ, Viner C, Hobbs S, Gore ME, McElwain TJ. Tumour necrosis factor, cholestatic jaundice, and chronic liver disease. Gut. 1990;31:938–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Petersen C. D-lactic acidosis. Nutr Clin Pract. 2005;20:634–45.CrossRefPubMedGoogle Scholar
  47. 47.
    Kadakia SC. D-lactic acidosis in a patient with jejunoileal bypass. J Clin Gastroenterol. 1995;20:154–6.CrossRefPubMedGoogle Scholar
  48. 48.
    From the Centers for Disease Control and Prevention. Lactic acidosis traced to thiamine deficiency related to nationwide shortage of multivitamins for total parenteral nutrition–United States, 1997. JAMA. 1997;278:109–11.Google Scholar
  49. 49.
    Mayeur C, Gratadoux JJ, Bridonneau C, Chegdani F, Larroque B, Kapel N, Corcos O, Thomas M, Joly F. Faecal D/L lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome. PLoS One. 2013;8(1):e54335. doi: 10.1371/journal.pone.0054335. Epub 2013 Jan 23.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Takahashi K, Terashima H, Kohno K, Ohkohchi N. A stand-alone synbiotic treatment for the prevention of D-lactic acidosis in short bowel syndrome. Int Surg. 2013;98:110–3.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Seguy D, Vahedi K, Kapel N, et al. Low-dose growth hormone in adult home parenteral nutrition-dependent short bowel syndrome patients: a positive study. Gastroenterology. 2003;124:293–02.CrossRefPubMedGoogle Scholar
  52. 52.
    Peretti N, Loras-Duclaux I, Kassai B, et al. Growth hormone to improve short bowel syndrome intestinal autonomy: a pediatric randomized open-label clinical trial. J Parenter Enteral Nutr. 2011;35:723–31.CrossRefGoogle Scholar
  53. 53.
    Yang H, Teitelbaum DH. Novel agents in the treatment of intestinal failure: humoral factors. Gastroenterology. 2006;130(2 Suppl 1):S117–21.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Goulet O, Dabbas-Tyan M, Talbotec C, et al. Effect of recombinant human growth hormone on intestinal absorption and body composition in children with short bowel syndrome. J Parenter Enteral Nutr. 2010;34:513–20.CrossRefGoogle Scholar
  55. 55.
    Wales PW, Nasr A, de Silva N, et al. Human growth hormone and glutamine for patients with short bowel syndrome. Cochrane Database Syst Rev. 2010;(6):CD006321.Google Scholar
  56. 56.
    Jeppesen PB. Gut hormones in the treatment of short-bowel syndrome and intestinal failure. Curr Opin Endocrinol Diabetes Obes. 2015;22:14–20.CrossRefPubMedGoogle Scholar
  57. 57.
    Jeppesen PB, Gilroy R, Pertkiewicz M, et al. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60:902–14.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wilhelm SM, Lipari M, Kulik JK, Kale-Pradhan PB. Teduglutide for the treatment of short bowel syndrome. Ann Pharmacother. 2014;48(9):1209–13.CrossRefPubMedGoogle Scholar
  59. 59.
    Ben Lulu S, Coran AG, Shehadeh N, Shamir R, Mogilner JG, Sukhotnik I. Oral insulin stimulates intestinal epithelial cell turnover following massive small bowel resection in a rat and a cell culture model. Pediatr Surg Int. 2012;28:179–87.CrossRefPubMedGoogle Scholar
  60. 60.
    Shamir R, Kolacek S, Koletzko S, Tavori I, Bader D, Litmanovitz I, Flidel-Rimon O, Marks KA, Sukhotnik I, Shehadeh N. Oral insulin supplementation in paediatric short bowel disease: a pilot observational study. J Pediatr Gastroenterol Nutr. 2009;49:108–11.CrossRefPubMedGoogle Scholar
  61. 61.
    Hamer HM, Jonkers DM, Bast A, et al. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr. 2009;28:88–93.CrossRefPubMedGoogle Scholar
  62. 62.
    McMellen ME, Wakeman D, Longshore SW, et al. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg. 2010;19:35–43.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Thompson J, Sudan D. Intestinal lengthening for short bowel syndrome. Adv Surg. 2008;42:49–61.CrossRefPubMedGoogle Scholar
  64. 64.
    Modi BP, Javid PJ, Jaksic T, et al.; International STEP Data Registry. First report of the international serial transverse enteroplasty data registry: indications, efficacy, and complications. J Am Coll Surg. 2007;204:365–7.Google Scholar
  65. 65.
    Sudan D, Thompson J, Botha J, et al. Comparison of intestinal lengthening procedures for patients with short bowel syndrome. Ann Surg. 2007;246:593–601.CrossRefPubMedGoogle Scholar
  66. 66.
    Bianchi A, Morabito A. The dilated bowel: a liability and an asset. Semin Pediatr Surg. 2009;18:249–57.CrossRefPubMedGoogle Scholar
  67. 67.
    Oliveira C, de Silva N, Wales PW. Five-year outcomes after serial transverse enteroplasty in children with short bowel syndrome. J Pediatr Surg. 2012;47:931–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Goulet OJ, Brousse N, Canioni D, et al. Syndrome of intractable diarrhoea with persistent villous atrophy in early childhood: a clinicopathological survey of 47 cases. J Pediatr Gastroenterol Nutr. 1998;26:151–61.CrossRefPubMedGoogle Scholar
  69. 69.
    Canani RB, Castaldo G, Bacchetta R, Martín MG, Goulet O. Congenital diarrhoeal disorders: advances in this evolving web of inherited enteropathies. Nat Rev Gastroenterol Hepatol. 2015;12:293–302.CrossRefPubMedGoogle Scholar
  70. 70.
    Müller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, Ponstingl H, Partsch J, Röllinghoff B, Köhler H, Berger T, Lenhartz H, Schlenck B, Houwen RJ, Taylor CJ, Zoller H, Lechner S, Goulet O, Utermann G, Ruemmele FM, Huber LA, Janecke AR. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40:1163–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, Sauvat F, Irtan S, Davit-Spraul A, Jacquemin E, Ruemmele F, Rainteau D, Goulet O, Colomb V, Chardot C, Henrion-Caude A, Debray D. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology. 2014;60:301–10.CrossRefPubMedGoogle Scholar
  72. 72.
    Halac U, Lacaille F, Joly F, et al. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr. 2011;52:460–5.CrossRefPubMedGoogle Scholar
  73. 73.
    Goulet O, Salomon J, Ruemmele F, et al. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis. 2007;2:20.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Salomon J, Goulet O, Canioni D, Brousse N, Lemale J, Tounian P, Coulomb A, Marinier E, Hugot JP, Ruemmele F, Dufier JL, Roche O, Bodemer C, Colomb V, Talbotec C, Lacaille F, Campeotto F, Cerf-Bensussan N, Janecke AR, Mueller T, Koletzko S, Bonnefont JP, Lyonnet S, Munnich A, Poirier F, Smahi A. Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 2014;133:299–310.CrossRefPubMedGoogle Scholar
  75. 75.
    Salomon J, Espinosa-Parrilla Y, Goulet O, et al. A founder effect at the EPCAM locus in congenital tufting enteropathy in the arabic gulf. Eur J Med Genet. 2011;54:319–22.CrossRefPubMedGoogle Scholar
  76. 76.
    Lemale J, Coulomb A, Dubern B, et al. Intractable diarrhea with tufting enteropathy: a favorable outcome is possible. J Pediatr Gastroenterol Nutr. 2011;52:734–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Heinz-Erian P, Müller T, Krabichler B, et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet. 2009;84:188–96.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A, Lechner S, et al. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet. 2015; pii: ddv367.Google Scholar
  79. 79.
    Müller T, Rasool I, Heinz-Erian P, Mildenberger E, Hülstrunk C, Müller A, et al. Congenital secretory diarrhoea caused by activating germline mutations Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut. 2015. pii: gutjnl-2015-309441. doi: 10.1136/gutjnl-2015-309441.
  80. 80.
    Goulet O, Vinson C, Roquelaure B, et al. Syndromic (phenotypic) diarrhea in early infancy. Orphanet J Rare Dis. 2008;3:6.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Fabre A, Martinez-Vinson C, Roquelaure B, et al. Novel mutations in TTC37 associated with tricho-hepato-enteric syndrome. Hum Mutat. 2011;32:277–81.CrossRefPubMedGoogle Scholar
  82. 82.
    Fabre A, Charroux B, Martinez-Vinson C, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet. 2012;90:689–92.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/Tricho-hepato-enteric syndrome. Orphanet J Rare Dis. 2013;8:5. doi: 10.1186/1750-1172-8-5.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kimura O, Ono S, Furukawa T, Higuchi K, Deguchi E, Iwai N. Management strategies for infants with total intestinal aganglionosis. J Pediatr Surg. 2009;44:1564–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Sauvat F, Grimaldi C, Lacaille F, Ruemmele F, Dupic L, Bourdaud N, Fusaro F, Colomb V, Jan D, Cezard JP, Aigrain Y, Revillon Y, Goulet O. Intestinal transplantation for total intestinal aganglionosis: a series of 12 consecutive children. J Pediatr Surg. 2008;43:1833–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Goulet O, Sauvat F, Jan D. Surgery for pediatric patients with chronic intestinal pseudo-obstruction syndrome. J Pediatr Gastroenterol Nutr. 2005;41 Suppl 1:S66–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Lapointe SP, Rivet C, Goulet O, et al. Urological manifestations associated with chronic intestinal pseudo-obstructions in children. J Urol. 2002;168:1768–70.CrossRefPubMedGoogle Scholar
  88. 88.
    Galmiche L, Jaubert F, Sauvat F, et al. Normal oxidative phosphorylation in intestinal smooth muscle of childhood chronic intestinal pseudo-obstruction. Neurogastroenterol Motil. 2011;23:24–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Roper EC, Gibson A, McAlindon ME, et al. Familial visceral neuropathy: a defined entity? Am J Med Genet. 2005;137:249–54.CrossRefGoogle Scholar
  90. 90.
    Tanner MS, Smith B, Lloyd JK. Functional intestinal obstruction due to deficiency of argyrophil neurones in the myenteric plexus. Familial syndrome presenting with short small bowel, malrotation, and pyloric hypertrophy. Arch Dis Child. 1976;51:837–41.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Auricchio A, Brancolini V, Casari G, et al. The locus for a novel syndromic form of neuronal intestinal pseudoobstruction maps to Xq28. Am J Hum Genet. 1996;58:743–8.PubMedPubMedCentralGoogle Scholar
  92. 92.
    FitzPatrick DR, Strain L, Thomas AE, et al. Neurogenic chronic idiopathic intestinal pseudo-obstruction, patent ductus arteriosus, and thrombocytopenia segregating as an X-linked recessive disorder. J Med Genet. 1997;34:666–9.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gargiulo A, Auricchio R, Barone MV, Cotugno G, Reardon W, Milla PJ, et al. Filamin A is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am J Hum Genet. 2007;80:751–8.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kapur RP, Robertson SP, Hannibal MC, Finn LS, Morgan T, van Kogelenberg M, Loren DJ. Diffuse abnormal layering of small intestinal smooth muscle is present in patients with FLNA mutations and x-linked intestinal pseudo-obstruction. Am J Surg Pathol. 2010;34:1528–43.CrossRefPubMedGoogle Scholar
  95. 95.
    Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science. 1999;283:689–92.CrossRefPubMedGoogle Scholar
  96. 96.
    Van Goethem G, Schwartz M, Lofgren A, Dermaut B, Van Broeckhoven C, Vissing J. Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet. 2003;11:547–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Pingault V, Girard M, Bondurand N, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet. 2002;111:198–206.CrossRefPubMedGoogle Scholar
  98. 98.
    Abell TL, Camilleri M, Donohoe K, et al. Consensus recommendations for gastric emptying scintigraphy: a joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. Am J Gastroenterol. 2008;103:753–63.CrossRefPubMedGoogle Scholar
  99. 99.
    Lapointe R. Chronic idiopathic intestinal pseudo-obstruction treated by near total small bowel resection: a 20-year experience. J Gastrointest Surg. 2010;14:1937–42.CrossRefPubMedGoogle Scholar
  100. 100.
    Goulet O, Talbotec C, Jan D, et al. Nutritional management of pediatric patients with chronic intestinal pseudo-obstruction syndrome. J Pediatr Gastroenterol Nutr. 2001;32 Suppl 1:S44–7.CrossRefPubMedGoogle Scholar
  101. 101.
    Di Lorenzo C, Youssef NN. Diagnosis and management of intestinal motility disorders. Semin Pediatr Surg. 2010;19:50–8.CrossRefPubMedGoogle Scholar
  102. 102.
    Gmora S, Poenaru D, Tsai E. Neostigmine for the treatment of pediatric acute colonic pseudo-obstruction. J Pediatr Surg. 2002;37:E28.CrossRefPubMedGoogle Scholar
  103. 103.
    Faure C, Goulet O, Ategbo S, et al. Chronic intestinal pseudoobstruction syndrome: clinical analysis, outcome, and prognosis in 105 children. French-Speaking Group of Pediatric Gastroenterology. Dig Dis Sci. 1999;44:953–9.CrossRefPubMedGoogle Scholar
  104. 104.
    De Giorgio R, Cogliandro RF, Barbara G, et al. Chronic intestinal pseudo-obstruction: clinical features, diagnosis, and therapy. Gastroenterol Clin North Am. 2011;40:787–807.CrossRefPubMedGoogle Scholar
  105. 105.
    Abu-Elmagd K. The concept of gut rehabilitation and the future of visceral transplantation. Nat Rev Gastroenterol Hepatol. 2015;12:108–20.CrossRefPubMedGoogle Scholar
  106. 106.
    Copple BL, Jaeschke H, Klaassen CD. Oxidative stress and the pathogenesis of cholestasis. Semin Liver Dis. 2010;30:193–202.CrossRefGoogle Scholar
  107. 107.
    Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta. 1773;2007:283–308.Google Scholar
  108. 108.
    Wagner M, Zollner G, Trauner M. New molecular insights into the mechanisms of cholestasis. J Hepatol. 2009;51:565–80.CrossRefPubMedGoogle Scholar
  109. 109.
    Soroka CJ, Ballatori N, Boyer JL. Organic solute transporter, OSTot-OSTI3: its role in bile acid transport and cholestasis. Semin Liver Dis. 2010;30:176–83.CrossRefGoogle Scholar
  110. 110.
    Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis. 2010;30(2):123–31.CrossRefGoogle Scholar
  111. 111.
    Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin Liver Dis. 2010;30(2):158–75.CrossRefGoogle Scholar
  112. 112.
    Geier A, Fickert P, Trauner M. Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:574–85.CrossRefPubMedGoogle Scholar
  113. 113.
    El Kasmi KC, Anderson AL, Devereaux MW, et al. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology. 2012;55:1518–28.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Cavicchi M, Beau P, Crenn P, et al. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med. 2000;132:525–32.CrossRefPubMedGoogle Scholar
  115. 115.
    Colomb V, Jobert-Giraud A, Lacaille F, et al. Role of lipid emulsions in cholestasis associated with long-term parenteral nutrition in children. J Parenter Enteral Nutr. 2000;24:345–50.CrossRefGoogle Scholar
  116. 116.
    Ganousse-Mazeron S, Lacaille F, Colomb-Jung V, Talbotec C, Ruemmele F, Sauvat F, Chardot C, Canioni D, Jan D, Revillon Y, Goulet O. Assessment and outcome of children with intestinal failure referred for intestinal transplantation. Clin Nutr. 2015;34:428–35.CrossRefPubMedGoogle Scholar
  117. 117.
    Koletzko B, Goulet O. Fish oil containing intravenous lipid emulsions in parenteral nutrition-associated cholestatic liver disease. Curr Opin Clin Nutr Metab Care. 2010;13:321–6.CrossRefPubMedGoogle Scholar
  118. 118.
    Gura KM, Duggan CP, Collier SB, et al. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: implications for future management. Pediatrics. 2006;118:e197–201.CrossRefPubMedGoogle Scholar
  119. 119.
    Linseisen J, Hoffmann J, Lienhard S, et al. Antioxidant status of surgical patients receiving TPN with an omega-3-fatty acid-containing lipid emulsion supplemented with alpha-tocopherol. Clin Nutr. 2000;19:177–84.CrossRefPubMedGoogle Scholar
  120. 120.
    Wanten G, Beunk J, Naber A, et al. Tocopherol isoforms in parenteral lipid emulsions and neutrophil activation. Clin Nutr. 2002;21:417–22.CrossRefPubMedGoogle Scholar
  121. 121.
    Forchielli ML, Bersani G, Tala S, et al. The spectrum of plant and animal sterols in different oil-derived intravenous emulsions. Lipids. 2010;45:63–71.CrossRefPubMedGoogle Scholar
  122. 122.
    Clayton PT, Whitfield P, Lyer K. The role of phytosterols in the pathogenesis of liver complications of pediatric parenteral nutrition. Nutrition. 1998;14:158–64.CrossRefPubMedGoogle Scholar
  123. 123.
    Mertes N, Grimm H, Furst P, et al. Safety and efficacy of a new parenteral lipid emulsion (SMOFlipid) in surgical patients: a randomized, double-blind, multicenter study. Ann Nutr Metab. 2006;50:253–9.CrossRefPubMedGoogle Scholar
  124. 124.
    Tomsits E, Tolgysi A, Fekete G, et al. Safety and efficacy of a lipid emulsion containing a mixture of soybean, olive, coconut and fish oils: a randomized double blind trial in premature infants requiring parenteral nutrition. J Pediatr Gastroenterol Nutr. 2010;51:514–21.CrossRefPubMedGoogle Scholar
  125. 125.
    Goulet O, Antebi H, Wolf C, et al. A new intravenous fat emulsion containing fish oil: a single center, double-blind randomized study on long-term efficacy and safety in pediatric patients. J Parenter Enteral Nutr. 2010;34:485–95.CrossRefGoogle Scholar
  126. 126.
    Muhammed R, Bremner R, Protheroe S, Johnson T, Holden C, Murphy MS. Resolution of parenteral nutrition-associated jaundice on changing from a soybean oil emulsion to a complex mixed-lipid emulsion. J Pediatr Gastroenterol Nutr. 2012;54:797–802.CrossRefPubMedGoogle Scholar
  127. 127.
    Goulet OJ. Intestinal failure-associated liver disease and the use of fish oil-based lipid emulsions. World Rev Nutr Diet. 2015;112:90–114.CrossRefPubMedGoogle Scholar
  128. 128.
    Leonberg B, Chuang E, Eicher P, Tershakovec AM, Leonard L, Stallings VA. Long-term growth and development in children after home parenteral nutrition. J Pediatr. 1998;132:461–6.CrossRefPubMedGoogle Scholar
  129. 129.
    Colomb V, Dabbas-Tyan M, et al. Long-term outcome of children receiving home parenteral nutrition: a 20-year single-center experience in 302 patients. J Pediatr Gastroenterol Nutr. 2007;44:347–53.CrossRefPubMedGoogle Scholar
  130. 130.
    Norman JL, Crill CM. Optimizing the transition to home parenteral nutrition in pediatric patients. Nutr Clin Pract. 2011;26:273–85.CrossRefPubMedGoogle Scholar
  131. 131.
    Gandullia P, Lugani F, Costabello L, Arrigo S, Calvi A, Castellano E, Vignola S, Pistorio A, Barabino AV. Long-term home parenteral nutrition in children with chronic intestinal failure: a 15-year experience at a single Italian centre. Dig Liver Dis. 2011;43:28–33.CrossRefPubMedGoogle Scholar
  132. 132.
    Wiskin A, Cole C, Owens D, Morgan M, Burge DM, Beattie RM. Ten-year experience of home parenteral nutrition in a single centre. Acta Paediatr. 2012;101:524–7.CrossRefPubMedGoogle Scholar
  133. 133.
    Barclay A, Henderson P, Gowen H, Puntis J, BIFS collaborators. The continued rise of paediatric home parenteral nutrition use: implications for service and the improvement of longitudinal data collection. Clin Nutr. 2014;14:290–8.Google Scholar
  134. 134.
    Diamanti A, Conforti A, Panetta F, Torre G, Candusso M, Bagolan P, Papa RE, Grimaldi C, Fusaro F, Capriati T, et al. Long-term outcome of home parenteral nutrition in patients with ultra-short bowel syndrome. J Pediatr Gastroenterol Nutr. 2014;58:438–42.CrossRefPubMedGoogle Scholar
  135. 135.
    Petit LM, Girard D, Ganousse-Mazeron S, Talbotec C, Pigneur B, Elie C, Corriol O, Poisson C, Goulet O, Colomb V. Weaning off prognosis factors of home parenteral nutrition for children with primary digestive disease. J Pediatr Gastroenterol Nutr. 2016;62(3):462–8.CrossRefPubMedGoogle Scholar
  136. 136.
    Pironi L, Joly F, Forbes A, Colomb V, Lyszkowska M, Baxter J, Gabe S, Hébuterne X, Gambarara M, Gottrand F, Cuerda C, Thul P, Messing B, Goulet O, Staun M, Van Gossum A, Home Artificial Nutrition & Chronic Intestinal Failure Working Group of the European Society for Clinical Nutrition and Metabolism (ESPEN). Long-term follow-up of patients on home parenteral nutrition in Europe: implications for intestinal transplantation. Gut. 2011;60:17–25.CrossRefPubMedGoogle Scholar
  137. 137.
    Kim JS, Holtom P, Vigen C. Reduction of catheter-related bloodstream infections through the use of a central venous line bundle: epidemiologic and economic consequences. Am J Infect Control. 2011;39:640–6.CrossRefPubMedGoogle Scholar
  138. 138.
    Marschall J, Mermel L, Fakih M, Hadaway L, Kallen A, O’Grady N, Pettis AM, Rupp ME, Sandora T, Maragakis LL, et al. Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:753–71.CrossRefPubMedGoogle Scholar
  139. 139.
    Sudan D, DiBaise J, Torres C, Thompson J, Raynor S, Gilroy R, Horslen S, Grant W, Botha J, Langnas A. A multidisciplinary approach to the treatment of intestinal failure. J Gastrointest Surg. 2005;9:165–76.CrossRefPubMedGoogle Scholar
  140. 140.
    Torres C, Sudan D, Vanderhoof J, Grant W, Botha J, Raynor S, Langnas A. Role of an intestinal rehabilitation program in the treatment of advanced intestinal failure. J Pediatr Gastroenterol Nutr. 2007;45:204–12.CrossRefPubMedGoogle Scholar
  141. 141.
    Nucci A, Burns RC, Armah T, Lowery K, Yaworski JA, Strohm S, Bond G, Mazariegos G, Squires R. Interdisciplinary management of pediatric intestinal failure: a 10-year review of rehabilitation and transplantation. J Gastrointest Surg. 2008;12:429–35.CrossRefPubMedGoogle Scholar
  142. 142.
    Sigalet D, Boctor D, Robertson M, Lam V, Brindle M, Sarkhosh K, Driedger L, Sajedi M. Improved outcomes in paediatric intestinal failure with aggressive prevention of liver disease. Eur J Pediatr Surg. 2009;19:348–53.CrossRefPubMedGoogle Scholar
  143. 143.
    Cowles RA, Ventura KA, Martinez M, Lobritto SJ, Harren PA, Brodlie S, Carroll J, Jan DM. Reversal of intestinal failure-associated liver disease in infants and children on parenteral nutrition: experience with 93 patients at a referral center for intestinal rehabilitation. J Pediatr Surg. 2010;45:84–7.CrossRefPubMedGoogle Scholar
  144. 144.
    Javid PJ, Malone FR, Reyes J, et al. The experience of a regional pediatric intestinal failure program: successful outcomes from intestinal rehabilitation. Am J Surg. 2010;199:676–9.CrossRefPubMedGoogle Scholar
  145. 145.
    Nusinovich Y, Revenis M, Torres C. Long-term outcomes for infants with intestinal atresia studied at Children’s National Medical Center. J Pediatr Gastroenterol Nutr. 2013;57:324–9.CrossRefPubMedGoogle Scholar
  146. 146.
    Beath S, Pironi L, Gabe S, et al. Collaborative strategies to reduce mortality and morbidity in patients with chronic intestinal failure including those who are referred for small bowel transplantation. Transplantation. 2008;85:1378–84.CrossRefPubMedGoogle Scholar
  147. 147.
    Grant D, Abu-Elmagd K, Mazariegos G, Vianna R, Langnas A, Mangus R, Farmer DG, Lacaille F, Iyer K, Fishbein T, Intestinal Transplant Association. Intestinal transplant registry report: global activity and trends. Am J Transplant. 2015;15:210–9.CrossRefPubMedGoogle Scholar
  148. 148.
    Pironi L, Forbes A, Joly F, et al. Survival of patients identified as candidates for intestinal transplantation: a 3-year prospective follow-up. Gastroenterology. 2008;135:61e71.CrossRefGoogle Scholar
  149. 149.
    Pironi L, Goulet O, Buchman A, et al.; Home Artificial Nutrition and Chronic Intestinal Failure Working Group of ESPEN. Outcome on home parenteral nutrition for benign intestinal failure: a review of the literature and benchmarking with the European prospective survey of ESPEN. Clin Nutr. 2012;31:831–45.Google Scholar
  150. 150.
    Pironi L, Joly F, Forbes A, et al. Long-term follow-up of patients on home parenteral nutrition in Europe: implications for intestinal transplantation. Gut. 2011;60:17–25.CrossRefPubMedGoogle Scholar
  151. 151.
    Taha AM, Sharif K, Johnson T, Clarke S, Murphy MS, Gupte GL. Long-term outcomes of isolated liver transplantation for short bowel syndrome and intestinal failure-associated liver disease. J Pediatr Gastroenterol Nutr. 2012;54:547–51.CrossRefPubMedGoogle Scholar
  152. 152.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41 Suppl 2:S1–87.CrossRefPubMedGoogle Scholar
  153. 153.
    Wales P, Allen N, Worthington P, George D, Compher C, the American Society for Parenteral and Enteral Nutrition, Teitelbaum D. A.S.P.E.N. Clinical guidelines: support of pediatric patients with intestinal failure at risk of parenteral nutrition-associated liver disease. J Parenter Enteral Nutr. 2014;38:538–57.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Olivier Goulet
    • 1
    Email author
  • Florence Lacaille
    • 1
  • Cécile Lambe
    • 1
  1. 1.Division of Pediatric Gastroenterology-Hepatology-Nutrition, National Reference Center for Rare Digestive Diseases, Pediatric Intestinal Failure Rehabilitation Center, Hôpital Necker-Enfants MaladesUniversity Paris DescartesParisFrance

Personalised recommendations