Extracting Higher-Order Goals from the Mizar Mathematical Library

  • Chad E. Brown
  • Josef UrbanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9791)


Certain constructs allowed in Mizar articles cannot be represented in first-order logic but can be represented in higher-order logic. We describe a way to obtain higher-order theorem proving problems from Mizar articles that make use of these constructs. In particular, higher-order logic is used to represent schemes, a global choice construct and set level binders. The higher-order automated theorem provers Satallax and LEO-II have been run on collections of these problems and the results are discussed.


Formalized mathematics Set theory Higher-order logic Automated theorem proving 


  1. 1.
    Bancerek, G.: On the characteristic and weight of a topological space. Formalized Math. 13(1), 163–169 (2005)Google Scholar
  2. 2.
    Benzmüller, C., Paulson, L.C., Sultana, N., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reasoning 55(4), 389–404 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT problems. J. Autom. Reasoning 51(1), 57–77 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Church, A.: A formulation of the simple theory of types. J. Symbol. Logic 5, 56–68 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Committee, L.: Boolean properties of sets – definitions, April 2002.
  6. 6.
    Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reasoning 3(2), 153–245 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Miller, D., Nadathur, G.: A logic programming approach to manipulating formulas and programs. In: IEEE Symposium on Logic Programming. Salt Lake City (1987)Google Scholar
  8. 8.
    Schulz, S.: E - A Brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)zbMATHGoogle Scholar
  9. 9.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Trybulec, A.: Domains and their Cartesian products. Formalized Math. 1(1), 115–122 (1990)Google Scholar
  11. 11.
    Trybulec, A.: Tarski Grothendieck set theory. Formalized Math. 1(1), 9–11 (1990)Google Scholar
  12. 12.
    Trybulec, W.A.: Subgroup and cosets of subgroups. Formalized Math. 1(5), 855–864 (1990)Google Scholar
  13. 13.
    Trybulec, Z.: Properties of subsets. Formalized Math. 1(1), 67–71 (1990)Google Scholar
  14. 14.
    Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reasoning 37(1–2), 21–43 (2006)zbMATHGoogle Scholar
  15. 15.
    Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215. Springer, Heidelberg (2003). doi: 10.1007/3-540-36469-2_16 CrossRefGoogle Scholar
  16. 16.
    Urban, J.: MPTP - motivation, implementation, first experiments. J. Autom. Reasoning 33(3), 319–339 (2005). MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Czech Technical UniversityPragueCzech Republic

Personalised recommendations