Skip to main content

\(\mathsf {SC}^\mathsf{2} \): Satisfiability Checking Meets Symbolic Computation

(Project Paper)

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9791)

Abstract

Symbolic Computation and Satisfiability Checking are two research areas, both having their individual scientific focus but sharing also common interests in the development, implementation and application of decision procedures for arithmetic theories. Despite their commonalities, the two communities are rather weakly connected. The aim of our newly accepted \(\mathsf {SC}^\mathsf{2} \) project (H2020-FETOPEN-CSA) is to strengthen the connection between these communities by creating common platforms, initiating interaction and exchange, identifying common challenges, and developing a common roadmap from theory along the way to tools and (industrial) applications. In this paper we report on the aims and on the first activities of this project, and formalise some relevant challenges for the unified \(\mathsf {SC}^\mathsf{2} \) community.

Keywords

  • Logical problems
  • Symbolic computation
  • Computer algebra systems
  • Satisfiability checking
  • Satisfiability modulo theories

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42547-4_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-42547-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    It is usual in the SMT community to refer to these constraints as arithmetic. But, as they involve quantities as yet unknown, manipulating them is algebra. Hence both words occur, with essentially the same meaning, throughout this document.

  2. 2.

    http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15471.

  3. 3.

    Email contact: J.H.Davenport@bath.ac.uk.

References

  1. Abbott, J., Bigatti, A.M., Lagorio, G.: CoCoA-5: a system for doing computations in commutative algebra. http://cocoa.dima.unige.it

  2. Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. In: Proceedings ISSAC 2015, pp. 1–6. ACM (2015)

    Google Scholar 

  3. Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Proceedings ISSAC 2014, pp. 1–8. ACM (2014)

    Google Scholar 

  4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: \(\mathtt CVC4\). In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  5. Barrett, C., Kroening, D., Melham, T.: Problem solving for the 21st century: efficient solvers for satisfiability modulo theories. Technical report 3, London Mathematical Society and Smith Institute for Industrial Mathematics and System Engineering, Knowledge Transfer Report (2014). http://www.cs.nyu.edu/~barrett/pubs/BKM14.pdf

  6. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, Chap. 26, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)

    Google Scholar 

  7. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-LIB) (2010). www.SMT-LIB.org

  8. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  9. Bixby, R.E.: Computational progress in linear and mixed integer programming. In: Presentation at ICIAM 2015 (2015)

    Google Scholar 

  10. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout, A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 67–81. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  11. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodríguez-Carbonell, E., Rubio, A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  12. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational Algebra and Number Theory (London, 1993). http://dx.doi.org/10.1006/jsco.1996.0125

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Bouton, T., Caminha, D., de Oliveira, B., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  14. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer, Heidelberg (2014)

    Google Scholar 

  15. Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition. J. Symbol. Comput. 76, 1–35 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 623–637. Springer International Publishing, Switzerland (2015)

    CrossRef  Google Scholar 

  17. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

    CrossRef  MATH  Google Scholar 

  18. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings ISSAC 2007, pp. 54–60. ACM (2007)

    Google Scholar 

  19. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT2 solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  20. Buchberger, B.: Ein Algorithmus zum Auffinden des basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck (1965). English translation: J. Symbolic Computation 41, 475–511 (2006)

    Google Scholar 

  21. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proceedings ISSAC 2009, pp. 95–102. ACM (2009)

    Google Scholar 

  22. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  23. Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring constraints. In: Proceedings SMT 2013. EPiC Series, vol. 20, pp. 88–97. EasyChair (2013)

    Google Scholar 

  24. Collins, G.E.: The SAC-1 system: an introduction and survey. In: Proceedings SYMSAC 1971, pp. 144–152. ACM (1971)

    Google Scholar 

  25. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  26. Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework for non-linear integer arithmetic reasoning in Alt-Ergo. In: Proceedings SYNASC 2013, pp. 161–168. IEEE (2013)

    Google Scholar 

  27. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings STOC 1971, pp. 151–158. ACM (1971). http://doi.acm.org/10.1145/800157.805047

  28. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: An open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Switzerland (2015)

    CrossRef  Google Scholar 

  29. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symbol. Comput. 5, 29–35 (1988)

    MathSciNet  CrossRef  MATH  Google Scholar 

  30. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    MathSciNet  CrossRef  MATH  Google Scholar 

  31. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    MathSciNet  CrossRef  MATH  Google Scholar 

  32. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de

  33. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)

    CrossRef  Google Scholar 

  34. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  35. Eraşcu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quantifier elimination (Case study: Square root computation). In: Proceedings ISSAC 2014, pp. 162–169. ACM (2014)

    Google Scholar 

  36. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. J. Satisfiability Boolean Model. Comput. 1(3–4), 209–236 (2007)

    MATH  Google Scholar 

  37. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  38. Hearn, A.C.: REDUCE: The first forty years. In: Proceedings A3L, pp. 19–24. Books on Demand GmbH (2005)

    Google Scholar 

  39. Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer, New York (1992)

    MATH  Google Scholar 

  40. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS(LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  41. Kahrimanian, H.G.: Analytic differentiation by a digital computer. Master’s thesis, Temple University Philadelphia (1953)

    Google Scholar 

  42. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer, New York (2008)

    MATH  Google Scholar 

  43. Maple. http://www.maplesoft.com/

  44. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)

    MathSciNet  CrossRef  Google Scholar 

  45. Martin, W.A., Fateman, R.J.: The Macsyma system. In: Proceedings SYMSAC 1971, pp. 59–75. ACM (1971)

    Google Scholar 

  46. Moses, J.: Symbolic integration. Ph.D. thesis, MIT & MAC TR-47 (1967)

    Google Scholar 

  47. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  48. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  49. Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

    CrossRef  MATH  Google Scholar 

  50. Nolan, J.: Analytic differentiation on a digital computer. Master’s thesis, MIT (1953)

    Google Scholar 

  51. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  52. Risch, R.H.: The problem of integration in finite terms. Trans. Am. Math. Soc. 139, 167–189 (1969)

    MathSciNet  CrossRef  MATH  Google Scholar 

  53. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT solver iSAT. In: Proceedings MBMV 2013, pp. 231–241. Institut für Angewandte Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik, Universität Rostock (2013)

    Google Scholar 

  54. Slagle, J.: A heuristic program that solves symbolic integration problems in freshman calculus. Ph.D. thesis, Harvard University (1961)

    Google Scholar 

  55. Strzeboński, A.: Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic formulas. In: Proceedings ISSAC 2012, pp. 335–342. ACM (2012)

    Google Scholar 

  56. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbol. Comput. 14(1), 1–29 (1992)

    MathSciNet  CrossRef  MATH  Google Scholar 

  57. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  58. Wolfram Research, Inc.: Mathematica, version 10.4. Wolfram Research, Inc., Champaign, Illinois (2016)

    Google Scholar 

  59. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their comments. We are grateful for support by the H2020-FETOPEN-2016-2017-CSA project \(\mathsf {SC}^\mathsf{2} \) (712689) and the ANR project ANR-13-IS02-0001-01 SMArT. Earlier work in this area was also supported by the EPSRC grant EP/J003247/1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ábrahám, E. et al. (2016). \(\mathsf {SC}^\mathsf{2} \): Satisfiability Checking Meets Symbolic Computation. In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (eds) Intelligent Computer Mathematics. CICM 2016. Lecture Notes in Computer Science(), vol 9791. Springer, Cham. https://doi.org/10.1007/978-3-319-42547-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42547-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42546-7

  • Online ISBN: 978-3-319-42547-4

  • eBook Packages: Computer ScienceComputer Science (R0)