Abbott, J., Bigatti, A.M., Lagorio, G.: CoCoA-5: a system for doing computations in commutative algebra. http://cocoa.dima.unige.it
Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. In: Proceedings ISSAC 2015, pp. 1–6. ACM (2015)
Google Scholar
Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Proceedings ISSAC 2014, pp. 1–8. ACM (2014)
Google Scholar
Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: \(\mathtt CVC4\). In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Barrett, C., Kroening, D., Melham, T.: Problem solving for the 21st century: efficient solvers for satisfiability modulo theories. Technical report 3, London Mathematical Society and Smith Institute for Industrial Mathematics and System Engineering, Knowledge Transfer Report (2014). http://www.cs.nyu.edu/~barrett/pubs/BKM14.pdf
Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, Chap. 26, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)
Google Scholar
Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-LIB) (2010). www.SMT-LIB.org
Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
MATH
Google Scholar
Bixby, R.E.: Computational progress in linear and mixed integer programming. In: Presentation at ICIAM 2015 (2015)
Google Scholar
Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout, A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 67–81. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Borralleras, C., Lucas, S., Navarro-Marset, R., Rodríguez-Carbonell, E., Rubio, A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg (2009)
CrossRef
Google Scholar
Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational Algebra and Number Theory (London, 1993). http://dx.doi.org/10.1006/jsco.1996.0125
MathSciNet
CrossRef
MATH
Google Scholar
Bouton, T., Caminha, D., de Oliveira, B., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–156. Springer, Heidelberg (2009)
CrossRef
Google Scholar
Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer, Heidelberg (2014)
Google Scholar
Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition. J. Symbol. Comput. 76, 1–35 (2016)
MathSciNet
CrossRef
MATH
Google Scholar
Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 623–637. Springer International Publishing, Switzerland (2015)
CrossRef
Google Scholar
Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)
CrossRef
MATH
Google Scholar
Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings ISSAC 2007, pp. 54–60. ACM (2007)
Google Scholar
Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT2 solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Buchberger, B.: Ein Algorithmus zum Auffinden des basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck (1965). English translation: J. Symbolic Computation 41, 475–511 (2006)
Google Scholar
Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proceedings ISSAC 2009, pp. 95–102. ACM (2009)
Google Scholar
Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring constraints. In: Proceedings SMT 2013. EPiC Series, vol. 20, pp. 88–97. EasyChair (2013)
Google Scholar
Collins, G.E.: The SAC-1 system: an introduction and survey. In: Proceedings SYMSAC 1971, pp. 144–152. ACM (1971)
Google Scholar
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Google Scholar
Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework for non-linear integer arithmetic reasoning in Alt-Ergo. In: Proceedings SYNASC 2013, pp. 161–168. IEEE (2013)
Google Scholar
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings STOC 1971, pp. 151–158. ACM (1971). http://doi.acm.org/10.1145/800157.805047
Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: An open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Switzerland (2015)
CrossRef
Google Scholar
Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symbol. Comput. 5, 29–35 (1988)
MathSciNet
CrossRef
MATH
Google Scholar
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
MathSciNet
CrossRef
MATH
Google Scholar
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)
MathSciNet
CrossRef
MATH
Google Scholar
Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de
Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)
CrossRef
Google Scholar
Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Eraşcu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quantifier elimination (Case study: Square root computation). In: Proceedings ISSAC 2014, pp. 162–169. ACM (2014)
Google Scholar
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. J. Satisfiability Boolean Model. Comput. 1(3–4), 209–236 (2007)
MATH
Google Scholar
Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
Hearn, A.C.: REDUCE: The first forty years. In: Proceedings A3L, pp. 19–24. Books on Demand GmbH (2005)
Google Scholar
Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer, New York (1992)
MATH
Google Scholar
Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS(LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Kahrimanian, H.G.: Analytic differentiation by a digital computer. Master’s thesis, Temple University Philadelphia (1953)
Google Scholar
Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer, New York (2008)
MATH
Google Scholar
Maple. http://www.maplesoft.com/
Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)
MathSciNet
CrossRef
Google Scholar
Martin, W.A., Fateman, R.J.: The Macsyma system. In: Proceedings SYMSAC 1971, pp. 59–75. ACM (1971)
Google Scholar
Moses, J.: Symbolic integration. Ph.D. thesis, MIT & MAC TR-47 (1967)
Google Scholar
de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)
CrossRef
Google Scholar
de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)
CrossRef
MATH
Google Scholar
Nolan, J.: Analytic differentiation on a digital computer. Master’s thesis, MIT (1953)
Google Scholar
Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)
CrossRef
Google Scholar
Risch, R.H.: The problem of integration in finite terms. Trans. Am. Math. Soc. 139, 167–189 (1969)
MathSciNet
CrossRef
MATH
Google Scholar
Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT solver iSAT. In: Proceedings MBMV 2013, pp. 231–241. Institut für Angewandte Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik, Universität Rostock (2013)
Google Scholar
Slagle, J.: A heuristic program that solves symbolic integration problems in freshman calculus. Ph.D. thesis, Harvard University (1961)
Google Scholar
Strzeboński, A.: Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic formulas. In: Proceedings ISSAC 2012, pp. 335–342. ACM (2012)
Google Scholar
Weispfenning, V.: Comprehensive Gröbner bases. J. Symbol. Comput. 14(1), 1–29 (1992)
MathSciNet
CrossRef
MATH
Google Scholar
Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)
MathSciNet
CrossRef
MATH
Google Scholar
Wolfram Research, Inc.: Mathematica, version 10.4. Wolfram Research, Inc., Champaign, Illinois (2016)
Google Scholar
Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500. Springer, Heidelberg (2010)
CrossRef
Google Scholar