Advertisement

Adaptation to Life in Fresh Water by Decapod Crustaceans: Evolutionary Challenges in the Early Life-History Stages

  • Klaus AngerEmail author
Chapter

Abstract

The Decapoda evolved in the Palaeozoic as a marine group and have since then shown limited radiation in limnic and terrestrial environments. About 80 % of the extant decapod species still live in the sea. The colonization of non-marine environments required physiological adaptations such as hyper-osmoregulate (for fresh water) and hypo-osmoregulate (for terrestrial and hypersaline habitats). Osmoregulatory abilities are strong in juvenile and adult freshwater decapods, but are typically absent in larval stages. Diadromous breeding migrations to estuaries or the sea are part of an adaptive strategy that allows adult life in non-marine habitats in combination with a conservation of the ancestral life-history pattern (extended planktonic larval development in salt water). Phylogenetically old groups of hololimnetic decapods (crayfish, aeglids, primary freshwater crabs) have completely eliminated the larval phase, showing direct development and brood care. Recent colonisers generally show intermediate patterns with an abbreviated and partially or fully lecithotrophic larval phase. Macroevolutionary patterns support possible colonization routes from the sea to fresh water and land. It is suggested that ecologically transitional habitats such as brackish mangrove swamps, salt marshes, seasonally inundated wetlands, and anchialine caves have been the principal entrance portals, rather than direct invasion through estuaries and rivers.

Keywords

Diadromy Abbreviated development Larval ecology osmoregulate Brood care 

Notes

Acknowledgments

I thank the editors of this volume for inviting me to contribute this chapter and for helping to improve a previous version of this manuscript.

References

  1. Abele, L. G. (1992). A review of the grapsid crab genus Sesarma (Crustacea: Decapoda: Grapsidae) in America, with the description of a new genus. Smithsonian Contribution to Zoology, 527, 1–60.CrossRefGoogle Scholar
  2. Adamczewska, A. M., & Morris, S. (2000). Locomotion, respiratory physiology, and energetics of amphibious and terrestrial crabs. Physiological and Biochemical Zoology, 73, 706–725.PubMedCrossRefGoogle Scholar
  3. Adamczewska, A. M., & Morris, S. (2001). Metabolic status and respiratory physiology of Gecarcoidea natalis, the Christmas Island red crab, during the annual breeding migration. Biological Bulletin, 200, 321–335.CrossRefGoogle Scholar
  4. Almeida, A. O., Coelho, P. A., Luz, J. R., Dos Santos, J. T. A., & Ferraz, N. R. (2008). Decapod crustaceans in fresh waters of southeastern Bahia, Brazil. Revista de Biologia Tropical, 56, 1225–1254.PubMedGoogle Scholar
  5. Almeida, T. I. R., Calijuri, Md C, Falco, P. B., Casali, S. P., Kupriyanova, E., Paranhos Filho, A. C., et al. (2011). Biogeochemical processes and the diversity of Nhecolândia lakes, Brazil. Anais da Academia Brasileira de Ciências, 83, 391–407.PubMedCrossRefGoogle Scholar
  6. Almelkar, G. B., Shenoy, S., Jalihal, D. R., & Sankolli, K. N. (2000). Prolonged larval development of an inland palaemonid prawn Macrobrachium walvanensis from India. In F. R. Schram & J. C. von Vaupel Klein (Eds.), The biodiversity crisis and crustacea (pp. 593–598). Rotterdam, Brookfield: A.A. Balkema.Google Scholar
  7. Anastasiadou, C., Ntakis, A., & Leonardos, I. D. (2011). Larval development of the freshwater shrimp Atyaephyra desmaresti (Millet, 1831) sensu lato (Decapoda: Caridea: Atyidae) and morphological maturation from juveniles to adults. Zootaxa 41–54.Google Scholar
  8. Anderson, J. A., & Epifanio, C. E. (2010). Response of the Asian shore crab Hemigrapsus sanguineus to metamorphic cues under natural field conditions. Journal of Experimental Marine Biology and Ecology, 384, 87–90.CrossRefGoogle Scholar
  9. Anger, K. (1991). Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae). Marine Ecology Progress Series, 72, 103–110.CrossRefGoogle Scholar
  10. Anger, K. (1995). The conquest of freshwater and land by marine crabs: Adaptations in life-history patterns and larval bioenergetics. Journal of Experimental Marine Biology and Ecology, 193, 119–145.CrossRefGoogle Scholar
  11. Anger, K. (2001). The biology of decapod crustacean larvae. Lisse: A.A. Balkema.Google Scholar
  12. Anger, K. (2003). Salinity as a key parameter in the larval biology of decapod crustaceans. Invertebrate Reproduction & Development, 43, 29–45.CrossRefGoogle Scholar
  13. Anger, K. (2005). The early life history of Sesarma fossarum, an endemic freshwater crab from Jamaica. Invertebrate Reproduction & Development, 47, 63–72.CrossRefGoogle Scholar
  14. Anger, K. (2013). Neotropical Macrobrachium (Caridea: Palaemonidae): On the biology, origin, and radiation of freshwater-invading shrimp. Journal of Crustacean Biology, 33, 151–183.CrossRefGoogle Scholar
  15. Anger, K., & Charmantier, G. (2000). Ontogeny of osmoregulate and salinity tolerance in a mangrove crab, Sesarma curacaoense (Decapoda: Grapsidae). Journal of Experimental Marine Biology and Ecology, 251, 265–274.PubMedCrossRefGoogle Scholar
  16. Anger, K., & Hayd, L. (2009). From lecithotrophy to planktotrophy: Ontogeny of larval feeding in the Amazon River prawn Macrobrachium amazonicum. Aquatic Biology, 7, 19–30.CrossRefGoogle Scholar
  17. Anger, K., & Hayd, L. (2010). Feeding and growth in early larval shrimp Macrobrachium amazonicum from the Pantanal, southwestern Brazil. Aquatic Biology, 9, 251–261.CrossRefGoogle Scholar
  18. Anger, K., & Schubart, C. D. (2005). Experimental evidence of food-independent larval development in endemic Jamaican freshwater-breeding crabs. Physiological and Biochemical Zoology, 78, 246–258.PubMedCrossRefGoogle Scholar
  19. Anger, K., Harms, J., Montú, M., & Bakker, C. (1990). Effects of salinity on the larval development of a semiterrestrial tropical crab, Sesarma angustipes (Decapoda: Grapsidae). Marine Ecology Progress Series, 62, 89–94.CrossRefGoogle Scholar
  20. Anger, K., Torres, G., & Giménez, L. (2006). Metamorphosis of a sesarmid river crab, Armases roberti: Stimulation by adult odours versus inhibition by salinity stress. Marine and Freshwater Behaviour physiology, 39, 269–278.CrossRefGoogle Scholar
  21. Anger, K., Torres, G., & Nettelmann, U. (2007). Adaptive traits in ecology, reproduction and early life history of Sesarma meridies, an endemic stream crab from Jamaica. Marine & Freshwarter Research, 58, 743–755.CrossRefGoogle Scholar
  22. Anger, K., Torres, G., Charmantier-Daures, M., & Charmantier, G. (2008). Adaptive diversity in congeneric coastal crabs: Ontogenetic patterns of osmoregulate match life-history strategies in Armases spp. (Decapoda, Sesarmidae). Journal of Experimental Marine Biology and Ecology, 367, 28–36.CrossRefGoogle Scholar
  23. Anger, K., Queiroga, H., & Calado, R. (2015). Larval development and behaviour strategies in Brachyura. In P. Castro, P. J. F. Davie, D. Guinot, F. R. Schram, & J. C. Vaupel Klein (Eds.), The crustacea decapoda: Brachyura (pp. 317–374). Leiden: Brill.Google Scholar
  24. Anker, A. (2008). A worldwide review of stygobiotic and stygophilic shrimps of the family Alpheidae (Crustacea, Decapoda, Caridea). Subterranean Biology, 6, 1–16.Google Scholar
  25. Baldari, F., Mejia-Ortiz, L. M., & Lopez-Mejia, M. (2010). A new cave species of Cryphiops (Crustacea: Decapoda: Palaemonidae) from Southern Mexico. Zootaxa 47–54.Google Scholar
  26. Barnard, K. H. (1950). Descriptive catalogue of South African Decapod Crustacea (crabs and shrimps). Annals of the South African Museum, 38, 1–837.Google Scholar
  27. Bas, C., Luppi, T., Spivak, E., & Schejter, L. (2009). Larval dispersion of the estuarine crab Neohelice granulata in coastal marine waters of the Southwest Atlantic. Estuarine, Coastal and Shelf Science, 83, 569–576.CrossRefGoogle Scholar
  28. Bauer, R. T. (2004). Remarkable shrimps: Adaptations and natural history of the Carideans. Norman: /////University of Oklahoma Press.Google Scholar
  29. Bauer, R. T. (2013). Amphidromy in shrimps: A life cycle between rivers and the sea. Latin American Journal of Aquatic Research, 41, 633–650.CrossRefGoogle Scholar
  30. Bauer, R. T., & Delahoussaye, J. (2008). Life history migrations of the amphidromous river shrimp Macrobrachium ohione from a continental large river system. Journal of Crustacean Biology, 28, 622–632.CrossRefGoogle Scholar
  31. Bilton, D. T., Paula, J., & Bishop, J. D. D. (2002). Dispersal, genetic differentiation and speciation in estuarine organisms. Estuarine, Coastal and Shelf Science, 55, 937–952.CrossRefGoogle Scholar
  32. Blumenshine, S. C., Tsukimura, B., Rice, A., & Rudnick, D. A. (2012). Environmental factors influencing the dynamics of Chinese mitten crab zoeae in the San Francisco Bay-Delta. Aquatic Invasions, 7, 111–124.CrossRefGoogle Scholar
  33. Boidron-Métairon, I. F. (1995). Larval nutrition. In L. R. McEdward (Ed.), Ecology of marine invertebrate larvae (pp. 223–248). Boca Raton, FL: CRC Press.Google Scholar
  34. Bolaños, J., Rivero, W., Hernandez, J., Magan, I., Hernández, G., Cuesta, J. A., et al. (2005). Abbreviated larval development of the pea crab Orthotheres barbatus (Decapoda: Brachyura: Pinnotheridae) described from laboratory-reared material, with notes on larval characters of the Pinnotherinae. Journal of Crustacean Biology, 25, 500–506.CrossRefGoogle Scholar
  35. Bond-Buckup, G., Jara, C. G., Perez-Losada, M., Buckup, L., & Crandall, K. A. (2008). Global diversity of crabs (Aeglidae: Anomura: Decapoda) in freshwater. Hydrobiologia, 595, 267–273.CrossRefGoogle Scholar
  36. Botello, A., & Alvarez, F. (2013). Phylogenetic relationships among the freshwater genera of palaemonid shrimps (Crustacea: Decapoda) from Mexico: Evidence of multiple invasions? Latin American Journal of Aquatic Research, 41, 773–780.CrossRefGoogle Scholar
  37. Boudour-Boucheker, N., Boulo, V., Lorin-Nebel, C., Elguero, C., Grousset, E., Anger, K., et al. (2013). Adaptation to freshwater in the palaemonid shrimp Macrobrachium amazonicum: Comparative ontogeny of osmoregulatory organs. Cell and Tissue Research, 353, 87–98.PubMedCrossRefGoogle Scholar
  38. Boudour-Boucheker, N., Boulo, V., Charmantier-Daures, M., Grousset, E., Anger, K., Charmantier, G., et al. (2014). Differential distribution of V-type H+-ATPase and Na+/K+-ATPase in the branchial chamber of the palaemonid shrimp Macrobrachium amazonicum. Cell and Tissue Resarch, 357, 195–206.CrossRefGoogle Scholar
  39. Bowman, T. E., & Abele, L. G. (1982). Classification of the recent Crustacea. In L. G. Abele (Ed.), Systematics, the fossil record and biogeography (pp. 1–27). New York: Academic Press.Google Scholar
  40. Bracken, H. D., Toon, A., Felder, D. L., Martin, J. W., Finley, M., Rasmussen, J., et al. (2009). The decapod tree of life: Compiling the data and moving toward a consensus of decapod evolution. Arthropod Systematics and Phylogeny, 67, 99–116.Google Scholar
  41. Breinholt, J., Pérez-Losada, M., & Crandall, K. (2009). The timing of the diversification of the freshwater crayfishes. In J. W. Martin, K. A. Crandall, & D. L. Felder (Eds.), Decapod crustacean phylogenetics (pp. 343–355). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  42. Brinkmann, R., & Reeder, P. (1994). The influence of sea-level change and geologic structure on cave development in west-central Florida. Physical Geography, 15, 52–61.Google Scholar
  43. Burggren, W. W. (1992). Respiration and circulation in land crabs: Novel variations on the marine design. American Zoology, 32, 417–427.CrossRefGoogle Scholar
  44. Burggren, W. W., & McMahon, B. R. (1988). Biology of the land crabs. New York: Cambridge University Press.CrossRefGoogle Scholar
  45. Calado, R., Nogueira, N., & Dos Santos, A. (2006). Extended parental care in a hermit crab of the genus Calcinus (Anomura: Diogenidae). Journal of the Marine Biological Association of UK, 86, 121–123.CrossRefGoogle Scholar
  46. Cannicci, S., Burrows, D., Fratini, S., Smith, T. J., III, Offenberg, J., & Dahdouh-Guebas, F. (2008). Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review: Mangrove ecology—applications in forestry and costal zone management. Aquatic Botany, 89, 186–200.CrossRefGoogle Scholar
  47. Carr, S. D., Hench, J. L., Luettich, R. A., Forward, R. B., & Tankersley, R. A. (2005). Spatial patterns in the ovigerous Callinectes sapidus spawning migration: Results from a coupled behavioral-physical model. Marine and Ecology Progress Series, 294, 213–226.CrossRefGoogle Scholar
  48. Carvalho, F. L., Pileggi, L. G., & Mantelatto, F. L. (2013). Molecular data raise the possibility of cryptic species in the Brazilian endemic prawn Macrobrachium potiuna (Decapoda, Palaemonidae). Latin American Journal of Aquatic Research, 41, 707–717.CrossRefGoogle Scholar
  49. Chace, F. A., & Hobbs, H. H. (1969). The freshwater and terrestrial decapod crustaceans of the West Indies with special reference to Dominica. Bulletin Unites States National Museum, 292, 1–298.CrossRefGoogle Scholar
  50. Charmantier, G. (1998). Ontogeny of osmoregulate in crustaceans: A review. Invertebrate & Reproduction Development, 33, 177–190.CrossRefGoogle Scholar
  51. Charmantier, G., & Anger, K. (2011). Ontogeny of osmoregulatory patterns in the South American shrimp Macrobrachium amazonicum: Loss of hypo-regulation in a land-locked population indicates phylogenetic separation from estuarine ancestors. Journal of Experimental Marine Biology and Ecology, 396, 89–98.CrossRefGoogle Scholar
  52. Charmantier, G., & Charmantier-Daures, M. (2001). Ontogeny of osmoregulate in crustaceans: The embryonic phase. American Zoolologist, 41, 1078–1089.Google Scholar
  53. Charmantier, G., Charmantier-Daures, M., & Towle, D. (2009). Osmotic and ionic regulation in aquatic arthropods. In D. H. Evans (Ed.), Osmotic and ionic regulation: Cells and animals (pp. 165–230). Boca Raton, FL: CRC Press.Google Scholar
  54. Chong, S. S. C., & Khoo, H. W. (1988). The identity of Macrobrachium lanchesteri (De Man, 1911) (Decapoda, Palaemonidae) from Peninsular Malaysia and Singapore, and a description of its first zoea. Crustaceana, 54, 196–206.CrossRefGoogle Scholar
  55. Christiansen, M. E., & Anger, K. (1990). Complete larval development of Galathea intermedia Lilljeborg reared in laboratory culture (Anomura: Galatheidae). Journal of Crustacean Biology, 10, 87–111.CrossRefGoogle Scholar
  56. Christy, J. H., & Stancyk, S. E. (1982). Timing of larval production and flux of invertebrate larvae in a well-mixed estuary. In V. S. Kennedy (Ed.), Estuarine Comparisons (pp. 489–503). New York: Academic Press.CrossRefGoogle Scholar
  57. Cieluch, U. (2004). Ontogeny of osmoregulatory functions and structures of three decapod crustaceans from the North Sea. (Master thesis), University of Hamburg, Germany.Google Scholar
  58. Cieluch, U., Anger, K., Aujoulat, F., Buchholz, F., Charmantier-Daures, M., & Charmantier, G. (2004). Ontogeny of osmoregulatory structures and functions in the green crab, Carcinus maenas (Crustacea, Decapoda). Journal of Experimental Biology, 207, 325–336.PubMedCrossRefGoogle Scholar
  59. Cieluch, U., Anger, K., Charmantier-Daures, M., & Charmantier, G. (2007). Osmoregulate and immunolocalization of Na+/K+-ATPase during the ontogeny of the mitten crab Eriocheir sinensis (Decapoda, Grapsoidea). Marine and Ecology Progress Series, 329, 169–178.CrossRefGoogle Scholar
  60. Clark, P. F. (2005). The evolutionary significance of heterochrony in the abbreviated zoeal development of pilumnine crabs (Crustacea: Brachyura: Xanthoidea). Zoological Journal of the Linnean Society, 143, 417–446.CrossRefGoogle Scholar
  61. Concepcion, G. B., & Nelson, S. G. (1999). Effects of a dam and reservoir on the distributions and densities of macrofauna in tropical streams of Guam (Mariana Islands). Journal of Freshwater Ecology, 14, 447–454.CrossRefGoogle Scholar
  62. Cook, B. D., Page, T. J., & Hughes, J. M. (2012). Phylogeography of related diadromous species in continental and island settings, and a comparison of their potential and realized dispersal patterns. Journal of Biogeography, 39, 421–430.CrossRefGoogle Scholar
  63. Couret, C. L., & Wong, D. C. L. (1978). Larval development of Halocaridina rubra Holthuis (Decapoda, Atyidae). Crustaceana, 34, 301–309.CrossRefGoogle Scholar
  64. Crandall, K. A., & Buhay, J. E. (2008). Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae—Decapoda) in freshwater. Hydrobiologia, 595, 295–301.CrossRefGoogle Scholar
  65. Crona, B. I., & Ronnback, P. (2005). Use of replanted mangroves as nursery grounds by shrimp communities in Gazi Bay, Kenya. Estuarine, Coastal and Shelf Science, 65, 535–544.CrossRefGoogle Scholar
  66. Cuesta, J. A., Garcia-Guerrero, M. U., & Hendrickx, M. E. (2007). The complete larval development of Johngarthia planatus (Brachyura: Grapsoidea: Gecarcinidae) described from laboratory reared material, with notes on the affinity of Gecarcinus and Johngarthia. Journal of Crustacean Biology, 27, 263–277.CrossRefGoogle Scholar
  67. Cumberlidge, N., & Ng, P. K. L. (2009). Systematics, evolution, and biogeography of freshwater crabs. In J. W. Martin, D. L. Felder, & K. A. Crandall (Eds.), Decapod crustacean phylogenetics (pp. 491–508). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  68. Davie, P. J. F., & Ng, P. K. L. (2012). Two new species of Orcovita (Crustacea: Decapoda: Brachyura: Varunidae) from anchialine caves on Christmas Island, eastern Indian Ocean. Raffles Bulletin Zoology, 60, 57–70.Google Scholar
  69. de Grave, S., Pentcheff, N. D., Ahyong, S. T., Chan, T. Y., Crandall, K. A., Dworschak, P. C., et al. (2009). A classification of living and fossil genera of decapod crustaceans. Raffles Bulletin Zoology, 21, 1–109.Google Scholar
  70. Dellatorre, F. G., Lovrich, G., Rojas, L., Milano, V., Figueroa, N. D., & Barón, P. J. (2013). Seasonal abundance and vertical distribution of crab larvae from northern Patagonia (Argentina): Implications for their transport in a biogeographic boundary region. Marine Biology Research, 10, 37–50.CrossRefGoogle Scholar
  71. Diele, K., & Simith, D. J. B. (2006). Salinity tolerance of northern Brazilian mangrove crab larvae, Ucides cordatus (Ocypodidae): Necessity for larval export? Ecological and management implications of seagrass landscapes. Estuarine, Coast and Shelf Science, 68, 600–608.CrossRefGoogle Scholar
  72. Diesel, R. (1989). Parental care in an unusual environment: Metopaulias depressus (Decapoda: Grapsidae), a crab that lives in epiphytic bromeliads. Animal Behaviour, 38, 561–575.CrossRefGoogle Scholar
  73. Diesel, R., & Horst, D. (1995). Breeding in a snail shell: Ecology and biology of the Jamaican montane crab Sesarma jarvisi (Decapoda: Grapsidae). Journal of Crustacean Biology, 15, 179–195.CrossRefGoogle Scholar
  74. Diesel, R., Schubart, C. D., & Schuh, M. (2000). A reconstruction of the invasion of land by Jamaican crabs (Grapsidae: Sesarminae). Journal of Zoology, 250, 141–160.CrossRefGoogle Scholar
  75. Dittel, A. I., & Epifanio, C. E. (2009). Invasion biology of the Chinese mitten crab Eriochier sinensis: A brief review. Journal of Experimental Marine Biology and Ecology, 374, 79–92.CrossRefGoogle Scholar
  76. dos Santos, A., Hayd, L., & Anger, K. (2013). A new species of Macrobrachium Spence Bate, 1868 (Decapoda, Palaemonidae), M. pantanalense, from the Pantanal, Brazil. Zootaxa, 3700, 534–546.PubMedCrossRefGoogle Scholar
  77. Duffy, J. E. (1996). Eusociality in a coral-reef shrimp. Nature, 381, 512–514.CrossRefGoogle Scholar
  78. Duffy, J. E., & Macdonald, K. S. (2010). Kin structure, ecology and the evolution of social organization in shrimp: A comparative analysis. Proceedings of the Royal Society London B: Biological Science, 277, 575–584.CrossRefGoogle Scholar
  79. Echeverría-Sáenz, S., Vargas, R., & Wehrtmann, I. S. (2003). Diversity of decapods inhabiting the largest mangrove system of Pacific Costa Rica. Nauplius, 11, 91–97.Google Scholar
  80. Epifanio, C. E. (1988). Transport of invertebrate larvae between estuaries and the continental shelf. American Fisheries Society Symposium, 3, 104–114.Google Scholar
  81. Epifanio, C. E. (1995). Transport of blue crab (Callinectes sapidus) larvae in the waters off Mid-Atlantic States. Bulletin of Marine Science, 57, 713–725.Google Scholar
  82. Etherington, L. L., & Eggleston, D. B. (2003). Spatial dynamics of large-scale, multistage crab (Callinectes sapidus) dispersal: Determinants and consequences for recruitment. Canadian Journal of Fisheries and Aquatic Sciences, 60, 873–887.CrossRefGoogle Scholar
  83. Fièvet, E. (2000). Passage facilities for diadromous freshwater shrimps (Decapoda: Caridea) in the Bananier River, Guadeloupe, West Indies. Regulated Rivers: Research and Management, 16, 101–112.CrossRefGoogle Scholar
  84. Fileman, E. S., Lindeque, P. K., Harmer, R. A., Halsband, C., & Atkinson, A. (2014). Feeding rates and prey selectivity of planktonic decapod larvae in the Western English Channel. Marine Biology, 161, 2479–2494.CrossRefGoogle Scholar
  85. Forbes, A. T. (1973). An unusual abbreviated larval life in the estuarine burrowing prawn Calianassa kraussi (Crustacea: Decapoda: Thalassinidea). Marine Biology, 22, 361–365.CrossRefGoogle Scholar
  86. Forward, R. B., Tankersley, R. A., & Rittschof, D. (2001). Cues for metamorphosis of brachyuran crabs: An overview. American Zoology, 41, 1108–1122.Google Scholar
  87. Francisco, D. A., Bueno, S. L. S., & Kihara, T. C. (2007). Description of the first juvenile of Aegla franca Schmitt, 1942 (Crustacea, Decapoda, Aeglidae). Zootaxa, 17–30.Google Scholar
  88. Freire, C. A., Cavassin, F., Rodrigues, E. N., Torres, A. H., & McNamara, J. C. (2003). Adaptive patterns of osmotic and ionic regulation, and the invasion of fresh water by the palaemonid shrimps. Comparative Biochemistry Physiology—Part A: Molecular Integrative Physiology, 136, 771–778.CrossRefGoogle Scholar
  89. Freire, C. A., Onken, H., & McNamara, J. C. (2008). A structure-function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry Physiology—Part A: Molecular Integrative Physiology, 151, 272–304.CrossRefGoogle Scholar
  90. Garrison, L. P., & Morgan, J. A. (1999). Abundance and vertical distribution of drifting, post-larval Macoma spp. (Bivalvia: Tellinidae) in the York River, Virginia, USA. Marine Ecology Progress Series, 182, 175–185.CrossRefGoogle Scholar
  91. Gebauer, P., Paschke, K., & Anger, K. (2004). Stimulation of metamorphosis in an estuarine crab, Chasmagnathus granulata (Dana, 1851): Temporal window of cue receptivity. Journal of Experimental Marine Biology and Ecology, 311, 25–36.CrossRefGoogle Scholar
  92. González-Gordillo, J. I., Anger, K., & Schubart, C. D. (2010). Morphology of the larval and first juvenile stages of two Jamaican endemic crab species with abbreviated development, Sesarma windsor and Metopaulias depressus (Decapoda: Brachyura: Sesarmidae). Journal of Crustacean Biology, 30, 101–121.CrossRefGoogle Scholar
  93. Goy, J. W. (2010). Infraorder Stenopodidea (Claus, 1872). In F. R. Schram & J. C. Vaupelklein (Eds.), Treatise on zoology—anatomy, taxonomy, biology the crustacea part A: Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim) (pp. 215–265). Brill: Leiden.CrossRefGoogle Scholar
  94. Greenaway, P. (1999). Physiological diversity and the colonization of land. In F. R. Schram & J. C. von Vaupel Klein (Eds.), Crustaceans and the biodiversity crisis (pp. 823–842). Leiden: Koninklijke Brill NV.Google Scholar
  95. Guay, C., Sainte-Marie, B., & Brêthes, J.-C. (2011). Strong maternal effects and extreme heterogeneity of progeny development in the caridean shrimp Sclerocrangon boreas (Crangonidae). Marine Biology, 158, 2835–2845.CrossRefGoogle Scholar
  96. Guerao, G., Anger, K., & Schubart, C. D. (2007). Larvae and first-stage juveniles of the American genus Armases Abele, 1992 (Brachyura: Sesarmidae): A morphological description of two complete developments and one first zoeal stage. Journal of National History, 41, 1811–1839.CrossRefGoogle Scholar
  97. Hansen, A. G., & Beauchamp, D. A. (2015). Latitudinal and photic effects on diel foraging and predation risk in freshwater pelagic ecosystems. Journal Animal Ecology, 84, 532–544.CrossRefGoogle Scholar
  98. Hartnoll, R. G. (1964). The freshwater grapsid crabs of Jamaica. Proceedings of Linnean Society London, 175, 145–169.CrossRefGoogle Scholar
  99. Hartnoll, R. G., & Clark, P. F. (2006). A mass recruitment event in the land crab Gecarcinus ruricola (Linnaeus, 1758) (Brachyura: Grapsoidea: Gecarcinidae), and a description of the megalop. Zoological Journal of Linnean Society, 146, 149–164.CrossRefGoogle Scholar
  100. Hartnoll, R. G., Baine, M. S. P., Britton, A., Grandas, Y., James, J., Velasco, A., et al. (2007). Reproduction of the black land crab, Gecarcinus ruricola, in the San Andres Archipelago, western Caribbean. Journal of Crustacean Biology, 27, 425–436.CrossRefGoogle Scholar
  101. Harvey, A. W. (1992). Abbreviated larval development in the Australian terrestrial hermit crab Coenobita variabilis McCulloch (Anomura: Coenobitidae). Journal of Crustacean Biology, 12, 196–209.CrossRefGoogle Scholar
  102. Hasiotis, S. T., & Mitchell, C. E. (1993). A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2, 291–314.CrossRefGoogle Scholar
  103. Havird, J. C., Santos, S. R., & Henry, R. P. (2014a). Osmoregulate in the Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): Expression of ion transporters, mitochondria-rich cell proliferation and hemolymph osmolality during salinity transfers. Journal of Experimental Biology, 217, 2309–2320.PubMedCrossRefGoogle Scholar
  104. Havird, J. C., Vaught, R. C., Weeks, J. R., Fujita, Y., Hidaka, M., Santos, S. R., et al. (2014b). Taking their breath away: Metabolic responses to low-oxygen levels in anchialine shrimps (Crustacea: Atyidae and Alpheidae). Comparative Biochemistry and Physiology A: Molecular Integrative Physiology, 178, 109–120.PubMedCrossRefGoogle Scholar
  105. Havird, J. C., Vaught, R. C., Weese, D. A., & Santos, S. R. (2015). Reproduction and development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) clarifies larval ecology in the Hawaiian anchialine ecosystem. Biological Bulletin, 229, 134–142.PubMedCrossRefGoogle Scholar
  106. Hayd, L., & Anger, K. (2013). Reproductive and morphometric traits of Macrobrachium amazonicum (Decapoda: Palaemonidae) from the Pantanal, Brazil, suggests initial speciation. Revista de Biología Tropical (International Journal of Tropical Biology), 61, 39–57. ISSN 0034-7744.Google Scholar
  107. Henry, R. P., Lucu, C., Onken, H., & Weihrauch, D. (2012). Multiple functions of the crustacean gill: Osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology, 3, 431.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Hicks, J. W. (1985). The breeding behaviour and migrations of the terrestrial crab Gecarcoidea natalis (Decapoda: Brachyura). Australian Journal of Zoology, 33, 127–142.CrossRefGoogle Scholar
  109. Hobbs, H. H. (1988). Crayfish distribution, adaptive radiation, and evolution. In D. M. Holdich & R. S. Lowery (Eds.), Freshwater crayfish: Biology, management and exploitation (pp. 52–82). London: Croom Helm.Google Scholar
  110. Hobbs, H. H., & Hobbs, H. H. (1995). Macrobrachium catonium, a new troglobitic shrimp from the Cayo district of Belize (Crustacea, Decapoda, Palaemonidae). Proceedings of Biological Society of Washington, 108, 50–53.Google Scholar
  111. Hobbs, H. H., Hobbs, H. H., & Daniel, M. A. (1977). A review of the troglobitic decapod crustaceans of the Americas. Smithsonian Contribution to Zoology, 244, 1–183.Google Scholar
  112. Holdich, D. M. (2001). Biology of freshwater crayfish. Oxford: Blackwell Science.Google Scholar
  113. Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., et al. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.PubMedCrossRefGoogle Scholar
  114. Huguet, D., Muñoz, J. E., García-Raso, J. E., & Cuesta, J. A. (2011). Extended parental care in the freshwater Shrimp genus Dugastella Bouvier, 1912 (Decapoda, Atyidae, Paratyinae). Crustaceana, 84, 251–255.CrossRefGoogle Scholar
  115. Jalihal, D. R., Sankolli, K. N., & Shenoy, S. (1993). Evolution of larval developmental patterns and the process of freshwaterization in the prawn genus Macrobrachium Bate, 1868 (Decapoda, Palaemonidae). Crustaceana, 65, 365–376.CrossRefGoogle Scholar
  116. Jin, G., Xie, P., & Li, Z. (2002). The precocious Chinese mitten crab: Changes of gonad, survival rate, and life span in a freshwater lake. Journal of Crustacean Biology, 22, 411–415.CrossRefGoogle Scholar
  117. Jirikowski, G. J., Richter, S., & Wolff, C. (2013). Myogenesis of Malacostraca—the “egg-nauplius” concept revisited. Frontiers in Zoology, 10, 1.CrossRefGoogle Scholar
  118. Kattner, G., Graeve, M., Calcagno, J. A., Lovrich, G. A., Thatje, S., & Anger, K. (2003). Lipid, fatty acid and protein utilization during lecithotrophic larval development of Lithodes santolla (Molina) and Paralomis granulosa (Jacquinot). Journal of Experimental Marine Biology and Ecology, 292, 61–74.CrossRefGoogle Scholar
  119. Kerr, K. A., Cornejo, A., Guichard, F., & Collin, R. (2014). Planktonic predation risk varies with prey life history stage and diurnal phase. Marine Ecology Progress Series, 503, 99–109.CrossRefGoogle Scholar
  120. Khodabandeh, S., Charmantier, G., & Charmantier-Daures, M. (2006). Immunolocalization of Na+, K-ATPase in osmoregulatory organs during the embryonic and post-embryonic development of the lobster Homarus gammarus. Journal of Crustacean Biology, 26, 515–523.CrossRefGoogle Scholar
  121. Krimsky, L. S., & Epifanio, C. E. (2008). Multiple cues from multiple habitats: Effect on metamorphosis of the Florida stone crab, Menippe mercenaria. Journal of Experimental Marine Biology and Ecology, 358, 178–184.CrossRefGoogle Scholar
  122. Lee, S. Y. (2008). Mangrove macrobenthos: Assemblages, services, and linkages. Journal of Sea Research, 59, 16–29.CrossRefGoogle Scholar
  123. Lignot, J.-H., Spanings-Pierrot, C., & Charmantier, G. (2000). Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture, 191, 209–245.CrossRefGoogle Scholar
  124. Linton, S., & Greenaway, P. (2007). A review of feeding and nutrition of herbivorous land crabs: Adaptations to low quality plant diets. Journal of Comparative Physiology, 177, 269–286.PubMedCrossRefGoogle Scholar
  125. Lipcius, R. N., & Eggleston, D. B. (2000). Ecology and fishery biology of spiny lobsters. In B. F. Phillips & J. Kittaka (Eds.), Spiny lobsters: Fisheries and culture (pp. 1–41). Oxford: Fishing News Books.CrossRefGoogle Scholar
  126. Little, C. (1990). The terrestrial invasion: An ecophysiological approach to the origins of land animals. Cambridge: Cambridge University Press.Google Scholar
  127. Liu, H. C., & Jeng, M. S. (2007). Some reproductive aspects of Gecarcoidea lalandii (Brachyura: Gecarcinidae) in Taiwan. Zoological Studies, 46, 347–354.Google Scholar
  128. Lucas, J. S. (1980). Spider crabs of the family Hymenosomatidae (Custacea; Brachyura) with particular reference to Australian species: Systematics and biology. Records of the Australian Museum, 33, 148–247.CrossRefGoogle Scholar
  129. Luppi, T. A., Spivak, E. D., Anger, K., & Valero, J. L. (2002). Patterns and processes of Chasmagnathus granulata and Cyrtograpsus angulatus (Brachyura: Grapsidae) recruitment in Mar Chiquita Coastal Lagoon, Argentina. Estuarine, Coastal and Shelf Science, 55, 287–297.CrossRefGoogle Scholar
  130. Macpherson, E., & Raventos, N. (2006). Relationship between pelagic larval duration and geographic distribution of mediterranean littoral fishes. Marine Ecology Progress Series, 327, 257–265.CrossRefGoogle Scholar
  131. Makarov, R. R. (1968). On the larval development of the genus Sclerocrangon G.O. Sars (Caridea, Crangonidae). Crustaceana, Supplement, 2, 27–37.Google Scholar
  132. March, J. G., Benstead, J. P., Pringle, C. M., & Scatena, F. N. (1998). Migratory drift of larval freshwater shrimps in two tropical streams, Puerto Rico. Freshwater Biology, 40, 261–273.CrossRefGoogle Scholar
  133. Martin, J. W., Crandall, K. A., & Felder, D. L. (2009). Decapod crustacean phylogenetics (p. i–xi, 1–632). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  134. Martin, J. W., Olesen, J., & Høeg, J. T. (2014a). The crustacean nauplius. In J. W. Martin, J. Olesen, & J. T. Høeg (Eds.), Atlas of crustacean larvae (pp. 8–16). Baltimore: Johns Hopkins University Press.Google Scholar
  135. Martin, J. W., Criales, M. M., & dos Santos, A. (2014b). Dendrobranchiata. In J. W. Martin, J. Olesen, & J. T. Høeg (Eds.), Atlas of crustacean larvae (pp. 236–242). Baltimore: Johns Hopkins University Press.Google Scholar
  136. McDowall, R. M. (2007). On amphidromy, a distinct form of diadromy in aquatic organisms. Fish and Fisheries, 8, 1–13.CrossRefGoogle Scholar
  137. McLaughlin, P. A., Lemaitre, R., & Crandall, K. A. (2010). Annotated checklist of anomuran decapod crustaceans of the world (exclusive of the Kiwaoidea and families Chirostylidae and Galatheidae of the Galatheoidea). Part III—Aegloidea. Raffles Bulletin Zoology Supplements, 23, 131–137.Google Scholar
  138. McNamara, J. C., & Faria, S. C. (2012). Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: A review. Journal of Comparative Physiology B, 182, 997–1014.CrossRefGoogle Scholar
  139. McNamara, J. C., Freire, C. A., Torres, A. H., & Faria, S. C. (2015). The conquest of fresh water by the palaemonid shrimps: An evolutionary history scripted in the osmoregulatory epithelia of the gills and antennal glands. Biological Journal of the Linnean Society, 114, 673–688.CrossRefGoogle Scholar
  140. Mejía-Ortíz, L. M., & López-Mejía, M. (2011). Freshwater prawns of the genus Macrobrachium (Decapoda, Palaemonidae) with abbreviated development from the Papaloapan river basin, Veracruz, Mexico: Distribution and New Species. Crustaceana, 84, 949–973.CrossRefGoogle Scholar
  141. Menú-Marque, S. A. (1973). Desarrollo larval de Palaemonetes argentinus (Nobili, 1901) en el laboratorio (Crustacea, Caridea, Palaemonidae). Physis, Section B, 32, 149–169.Google Scholar
  142. Montú, M., Anger, K., & Bakker, C. (1996). Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne-Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgoländer Meeresunters, 50, 223–252.CrossRefGoogle Scholar
  143. Morgan, G. J. (1987a). Abbreviated development in Paguristes frontalis (Milne Edwards, 1836) (Anomura: Diogenidae) from southern Australia. Journal of Crustacean Biology, 7, 536–540.CrossRefGoogle Scholar
  144. Morgan, G. J. (1987b). Brooding of juveniles and observations on dispersal of young in the spider crab Paranaxia serpulifera (Guérin) (Decapoda, Brachyura, Majidae) from Western Australia. Records of the Western Australian Museum, 13, 337–343.Google Scholar
  145. Morgan, S. G. (1995). Life and death in the plankton: Larval mortality and adaptation. In L. R. McEdward (Ed.), Ecology of marine invertebrate larvae (pp. 279–321). Boca Raton, FL: CRC Press.Google Scholar
  146. Morris, S. (2002). The ecophysiology of air-breathing in crabs with special reference to Gecarcoidea natalis. Comparative Biochemistry and Physiology B: Biochemical Molecular Biology, 131, 559–570.CrossRefGoogle Scholar
  147. Murphy, N. P., & Austin, C. M. (2005). Phylogenetic relationships of the globally distributed freshwater prawn genus Macrobrachium (Crustacea: Decapoda: Palaemonidae): Biogeography, taxonomy and the convergent evolution of abbreviated larval development. Zoologica Scripta, 34, 187–197.CrossRefGoogle Scholar
  148. Myers, G. S. (1949). Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia, 1949, 89–97.CrossRefGoogle Scholar
  149. Ng, P. K. L., Guinot, D., & Davie, P. J. F. (2008). Systema Brachyuorum. Part 1. An annotated checklist of extant Brachyuran crabs of the world. Raffles Bulletin of Zoology Supplement, 17, 1–286.Google Scholar
  150. Ng, P. K. L., Schubart, C. D., & Lukhaup, C. (2015). New species of “Vampire crabs” (Geosesarma de Man, 1892) from central Java, Indonesia, and the Identity of Sesarma (Geosesarma) nodulifera De Man, 1892 (Crustacea, Brachyura, Thoracotremata, Sesarmidae). Raffles Bulletin of Zoology, 63, 3–13.Google Scholar
  151. Nieves-Rivera, A. M., & Williams, E. H. (2003). Annual migrations and spawning of Coenobita clypeatus (Herbst) on Mona Island (Puerto Rico) and notes on inland crustaceans. Crustaceana, 76, 547–558.CrossRefGoogle Scholar
  152. Ojaveer, H., Gollasch, S., Jaanus, A., Kotta, J., Laine, A., Minde, A., et al. (2007). Chinese mitten crab Eriocheir sinensis in the Baltic Sea, a supply-side invader? Biological Invasions, 9, 409–418.CrossRefGoogle Scholar
  153. Olivier, T. J., Conner, S. L., & Bauer, R. T. (2012). Evidence of extended marine planktonic larval development in far-upstream populations of the river shrimp Macrobrachium ohione (Smith, 1874) from the Mississippi river. Journal of Crustacean Biology, 32, 899–905.CrossRefGoogle Scholar
  154. Olivier, T. J., Handy, K. Q., & Bauer, R. T. (2013). Effects of river control structures on the juvenile migration of Macrobrachium ohione. Freshwater Biology, 58, 1603–1613.CrossRefGoogle Scholar
  155. Padilla, D. K., & Miner, B. G. (2006). Legacies in life histories. Integrative Comparative Biology, 46, 217–223.PubMedCrossRefGoogle Scholar
  156. Page, T. J., Torati, L. S., Cook, B. D., Binderup, A., Pringle, C. M., Reuschel, S., et al. (2013). Invertébrés Sans Frontières: Large scales of connectivity of selected freshwater species among Caribbean Islands. Biotropica, 45, 236–244.CrossRefGoogle Scholar
  157. Panning, A. (1938). The Chinese mitten crab. Annual Report of Smithsonian Institution 361–375.Google Scholar
  158. Pohlmann, J. W., Iliffe, T. M., & Cifuentes, L. A. (1997). A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Marine Ecology Progress Series, 155, 17–27.CrossRefGoogle Scholar
  159. Porter, M. L., Perez-Losada, M., & Crandall, K. A. (2005). Model-based multi-locus estimation of decapod phylogeny and divergence times. Molecular Phylogenet Evolution, 37, 355–369.CrossRefGoogle Scholar
  160. Puky, M. (2014). Invasive crayfish on land: Orconectes limosus (Rafinesque, 1817) (Decapoda: Cambaridae) crossed a terrestrial barrier to move from a side arm into the Danube river at Szeremle, Hungary. Acta Zoologica Bulgaria: Supplement, 7, 143–146.Google Scholar
  161. Queiroga, H., & Blanton, J. (2004). Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae. Advances in Marine Biology, 47, 107–214.CrossRefGoogle Scholar
  162. Queiroga, H., Almeida, M. J., Alpuim, T., Flores, A. A. V., Francisco, S., Gonzalez-Gordillo, I., et al. (2006). Tide and wind control of megalopal supply to estuarine crab populations on the Portuguese west coast. Marine Ecology Progress Series, 307, 21–36.CrossRefGoogle Scholar
  163. Rabalais, N. N., & Cameron, J. N. (1983). Abbreviated development of Uca subcylindrica (Stimpson, 1859) (Crustacea, Decapoda, Ocypodidae) reared in the laboratory. Journal of Crustacean Biology, 3, 519–541.CrossRefGoogle Scholar
  164. Rabalais, N. N., & Cameron, J. N. (1985a). Physiological and morphological adaptations of adult Uca subcylindrica to semi-arid environments. Biological Bulletin, 168, 135–146.CrossRefGoogle Scholar
  165. Rabalais, N. N., & Cameron, J. N. (1985b). The effects of factors important in semi-arid environments on the early development of Uca subcylindrica. Biological Bulletin, 168, 147–160.CrossRefGoogle Scholar
  166. Rabalais, N. N., & Gore, R. H. (1985). Abbreviated development in Decapods. In A. M. Wenner (Ed.), Larval growth (pp. 67–126). Rotterdam: A.A. Balkema.Google Scholar
  167. Rasalan, S. B., Delmendo, M. N., & Reyes, T. G. (1969). Some observations on the biology of the freshwater prawn Macrobrachium lanceifrons (Dana), with notes on the fishery. FAO Fisheries Report, 57, 923–933.Google Scholar
  168. Rasmuson, L. K., Couture, J. L., & Morgan, S. G. (2014). Weakly synchronized larval release maintained in the presence of predatory fishes. Journal of Experimental Marine Biology and Ecology, 454, 26–31.CrossRefGoogle Scholar
  169. Richardson, A. J., Growns, J. E., & Cook, R. A. (2004). Distribution and life history of caridean shrimps in regulated lowland rivers in southern Australia. Marine Freshwater Research, 55, 295–308.CrossRefGoogle Scholar
  170. Rode, A. L., & Babcock, L. E. (2003). Phylogeny of fossil and extant freshwater crayfish and some closely related nephropid lobsters. Journal of Crustacean Biology, 23, 418–435.CrossRefGoogle Scholar
  171. Rodríguez, A., & Cuesta, J. A. (2011). Morphology of larval and first juvenile stages of the kangaroo shrimp Dugastella valentina (Crustacea, Decapoda, Caridea), a freshwater atyid with abbreviated development and parental care. Zootaxa 43–58.Google Scholar
  172. Rodríguez-Uribe, M.-C., Vega-Villasante, F., Guzmán-Arroyo, M., & Espinosa-Chaurand, L. D. (2014). Effects of an anthropogenic barrier concerning upstream migration of the amphidromous shrimp Macrobrachium tenellum (Smith 1871) (Decapoda: Palaemonidae) in the Mexican. Gayana, 78, 10–20.Google Scholar
  173. Rogers, A. D., Tyler, P. A., Connelly, D. P., Copley, J. T., James, R., Larter, R. D., et al. (2012). The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography. PLoS Biology, 10, e1001234.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Rome, N. E., Conner, S. L., & Bauer, R. T. (2009). Delivery of hatching larvae to estuaries by an amphidromous river shrimp: Tests of hypotheses based on larval moulting and distribution. Freshwater Biology, 54, 1924–1932.CrossRefGoogle Scholar
  175. Saito, T., & Konishi, K. (1999). Direct development in the sponge-associated deep-sea shrimp Spongicola japonica (Decapoda: Spongicolidae). Journal of Crustacean Biology, 19, 46–52.CrossRefGoogle Scholar
  176. Sakai, K. (2013). A review of the genus Eriocheir De Haan, 1835 and related genera, with the description of a new genus and a new species (Brachyura, Grapsoidea, Varunidae). Crustaceana, 86, 1103–1138.CrossRefGoogle Scholar
  177. Salman, S. D. (1987). Larval development of Atyaephyra desmaresti mesopotamica Al-Adhub (Decapoda, Atyidae) reared in the laboratory. Investigación Psquera, 51, 27–42.Google Scholar
  178. Sandifer, P. A. (1975). The role of pelagic larvae in recruitment to populations of adult decapod crustaceans in the York River estuary and adjacent lower Chesapeake Bay, Virginia. Estuarine Coastal and Marine Science, 3, 269–279.CrossRefGoogle Scholar
  179. Säwström, C., Beckley, L. E., Saunders, M. I., Thompson, P. A., & Waite, A. M. (2014). The zooplankton prey field for rock lobster phyllosoma larvae in relation to oceanographic features of the south-eastern Indian Ocean. Journal of Plankton Research, 36, 1003–1016.CrossRefGoogle Scholar
  180. Scholtz, G., & Richter, S. (1995). Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zoological Journal of Linnean Society, 113, 289–328.CrossRefGoogle Scholar
  181. Scholtz, G., Abzhanov, A., Alwes, F., Biffis, C., & Pint, J. (2009). Development, genes, and decapod evolution. In J. W. Martin, K. A. Crandall, & D. L. Felder (Eds.), Decapod crustacean phylogenetics (pp. 31–46). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  182. Schram, F. R. (2009). On the origin of Decapoda. In J. W. Martin, K. A. Crandall, & D. L. Felder (Eds.), Decapod crustacean phylogenetics (pp. 3–13). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  183. Schram, F. R., Feldman, R. M., & Copeland, M. J. (1978). The late devonian palaeopalaemonidae and the earliest decapod crustaceans. Journal of Palaeontol, 52, 1375–1387.Google Scholar
  184. Schubart, C. D., & Diesel, R. (1998). Osmoregulatory capacities and penetration into terrestrial habitats: A comparative study of Jamaican crabs of the genus Armases Abele, 1992 (Brachyura: Grapsidae: Sesarminae). Bulletin Marine Science, 62, 743–752.Google Scholar
  185. Schubart, C. D., & Diesel, R. (1999). osmoregulate and the transition from marine to freshwater and terrestrial life: A comparative study of Jamaican crabs of the genus Sesarma. Archiv für Hydrobiologie, 145, 331–347.CrossRefGoogle Scholar
  186. Schubart, C. D., & Santl, T. (2014). Differentiation within a river system: Ecology or geography driven? Evolututionary significant units and new species in Jamaican freshwater crabs. In D. C. J. Yeo, N. Cumberlidge, & S. Klaus (Eds.), Advances in freshwater decapod systematics and biologys (pp. 173–193). Leiden, The Netherlands: Brill.CrossRefGoogle Scholar
  187. Schubart, C. D., Diesel, R., & Hedges, S. B. (1998). Rapid evolution to terrestrial life in Jamaican crabs. Nature, 393, 363–365.CrossRefGoogle Scholar
  188. Schubart, C. D., Weil, T., Stenderup, J. T., Crandall, K. A., & Santl, T. (2010). Ongoing phenotypic and genotypic diversification in adaptively radiated freshwater crabs from Jamaica. In M. Glaubrecht (Ed.), Evolution in action (pp. 323–349). Berlin: Springer.CrossRefGoogle Scholar
  189. Sheaves, M. (2005). Nature and consequences of biological connectivity in mangrove systems. Marine Ecology Progress Series, 302, 293–305.CrossRefGoogle Scholar
  190. Silvestre, F., Trausch, G., & Devos, P. (2005). Hyper-osmoregulatory capacity of the Chinese mitten crab (Eriocheir sinensis) exposed to cadmium; acclimation during chronic exposure. Comparative Biochemical Physiological C: Toxicol Pharmacol, 140, 29–37.CrossRefGoogle Scholar
  191. Simith, Dd Jd B, Diele, K., & Abrunhosa, F. A. (2013). Carry-over effects of delayed larval metamorphosis on early juvenile performance in the mangrove crab Ucides cordatus (Ucididae). Journal of Experimental Marine Biology and Ecology, 440, 61–68.CrossRefGoogle Scholar
  192. Simith, Dd Jd B, Pires, M. A. B., Abrunhosa, F. A., Maciel, C. R., & Diele, K. (2014). Is larval dispersal a necessity for decapod crabs from the Amazon mangroves? Response of Uca rapax zoeae to different salinities and comparison with sympatric species. Journal of Experimental Marine Biology and Ecology, 457, 22–30.CrossRefGoogle Scholar
  193. Soh, L. C. (1969). Abbreviated development of non-marine crab, Sesarma (Geosesarma) perracae (Brachyura; Grapsidae), from Singapore, London. Journal of Zoology, 158, 357–370.Google Scholar
  194. Stemmer, M., & Schubart, C. D. (2013). Allopatric differentiation and morphometric growth in a Jamaican freshwater crab, with the discrimination of a cave phenotype. Studies on Neotropical Fauna and Environment, 48, 95–103.CrossRefGoogle Scholar
  195. Stemmer, M., & Schubart, C. D. (2015). Genetic analyses determine connectivity among cave and surface populations of the Jamaican endemic freshwater crab Sesarma fossarum in the Cockpit Country. International Journal of Speleology, 45, 35–41.CrossRefGoogle Scholar
  196. Stevens, B. G. (2014). Development and biology of king crab larvae. In B. G. Stevens (Ed.), King crabs of the world (pp. 233–259). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  197. Strathmann, R. R. (1982). Selection for retention or export of larvae in estuaries. In V. S. Kennedy (Ed.), Estuarine comparisons (pp. 521–535). San Diego: Academic Press.CrossRefGoogle Scholar
  198. Strathmann, R. R. (1993). Hypotheses on the origins of marine larvae. Annual Review of Ecology and Systematic, 24, 89–117.CrossRefGoogle Scholar
  199. Sulkin, S. D. (1978). Nutritional requirements during larval development of the Portunid crab, Callinectes sapidus Rathbun. Journal of Experimantal Marine Biology and Ecology, 34, 29–41.CrossRefGoogle Scholar
  200. Susanto, G. N., & Charmantier, G. (2000). Ontogeny of osmoregulate in the crayfish Astacus leptodactylus. Physiology and Biochemical Zoology, 73, 169–176.CrossRefGoogle Scholar
  201. Susanto, G. N., & Charmantier, G. (2001). Crayfish freshwater adaptation starts in eggs: Ontogeny of osmoregulate in embryos of Astacus leptodactylus. Journal of Experimental Zoology, 289, 433–440.PubMedCrossRefGoogle Scholar
  202. Thatje, S., & Mestre, N. C. (2010). Energetic changes throughout lecithotrophic larval development in the deep-sea lithodid crab Paralomis spinosissima from the Southern Ocean. Journal of Experimental Marine Biology and Ecology, 386, 119–124.CrossRefGoogle Scholar
  203. Thatje, S., Anger, K., Calcagno, J. A., Lovrich, G. A., Pörtner, H. O., & Arntz, W. E. (2005a). Challenging the Cold: Crabs Reconquer the Antarctic. Ecology, 86, 619–625.CrossRefGoogle Scholar
  204. Thatje, S., Bacardit, R., & Arntz, W. (2005b). Larvae of the deep-sea Nematocarcinidae (Crustacea: Decapoda: Caridea) from the Southern Ocean. Polar Biology, 28, 290–302.CrossRefGoogle Scholar
  205. Thiel, M. (2000). Extended parental care behavior in crustaceans—a comparative overview. In J. C. von Vaupel Klein & F. R. Schram (Eds.), The biodiversity crisis and crustacea (Vol. 2, pp. 211–226). Brookfield, Rotterdam: A.A. Balkema.Google Scholar
  206. Tilburg, C. E., Kernehan, C. D., Andon, A., & Epifanio, C. E. (2008). Modeling estuarine ingress of blue crab megalopae: Effects of temporal patterns in larval release. Journal of Marine Research, 66, 391–412.CrossRefGoogle Scholar
  207. Tilburg, C. E., Dittel, A. I., Miller, D. C., & Epifanio, C. E. (2011). Transport and retention of the mitten crab (Eriocheir sinensis) in a mid-atlantic estuary: Predictions from a larval transport model. Journal of Marine Research, 69, 137–165.CrossRefGoogle Scholar
  208. Turner, L. M., Hallas, J. P., Smith, M. J., & Morris, S. (2013). Phylogeography of the Christmas Island blue crab, Discoplax celeste (Decapoda: Gecarcinidae) on Christmas Island, Indian Ocean. Journal of Marine Biology Association UK, 93, 703–714.CrossRefGoogle Scholar
  209. Vogt, G. (2013). Abbreviation of larval development and extension of brood care as key features of the evolution of freshwater Decapoda. Biological Reviews, 88, 81–116.PubMedCrossRefGoogle Scholar
  210. Wasserman, R. J., Vink, T. J. F., Kramer, R., & Froneman, P. W. (2014). Hyperbenthic and pelagic predators regulate alternate key planktonic copepods in shallow temperate estuaries. Marine & Freshwater Research, 65, 791–801.CrossRefGoogle Scholar
  211. Wear, R. G. (1967). Life-history studies on New Zealand Brachyura. 1. Embryonic and post-embryonic development of Pilumnus novaezealandiae Filhol, 1886, and of P. lumpinus Bennnett, 1964 (Xanthidae, Pilumninae), NZ. Journal of Marine and Freshwater Research, 1, 482–535.CrossRefGoogle Scholar
  212. Wear, R. G. (1968). Life-history studies on New Zealand Brachyura. 2. Family Xanthidae. Larvae of Heterozius rotundifrons A. Milne Edwards, 1867, Ozius truncatus H. Milne Edwards, 1834, and Heteropanope (Pilumnopeus) serratifrons (Kinahan, 1856), NZ. Journal of Marine Freshwater Research, 2, 293–332.CrossRefGoogle Scholar
  213. Weiss, R., Anger, K., Hayd, L., & Schubart, C. D. (2015). Interpreting genetic distances for species recognition: The case of Macrobrachium amazonicum Heller, 1862 and the recently described M. pantanalense dos Santos, Hayd & Anger, 2013 (Decapoda, Palaemonidae) from Brazilian fresh waters. Crustaceana, 88, 1111–1126.CrossRefGoogle Scholar
  214. Wilbur, H. M. (1980). Complex life cycles. Annual Review of Ecology and Systematics, 11, 67–93.CrossRefGoogle Scholar
  215. Wilkens, H., Parzefall, J., & Ribowski, A. (1990). Population biology and larvae of the anchialine crab Munidopsis polymorpha (Galatheidae) from Lanzarote (Canary Islands). Journal of Crustacean Biology, 10, 667–675.CrossRefGoogle Scholar
  216. Williamson, D. I. (1972). Larval development in a marine and a freshwater species of Macrobrachium (Decapoda, Palaemonidae). Crustaceana, 23, 282–298.CrossRefGoogle Scholar
  217. Wilson, K. A. (1989). Ecology of mangrove crabs: Predation, physical factors and refuges. Bulletin Marine Science, 44, 263–273.Google Scholar
  218. Wowor, D., Muthu, V., Meier, R., Balke, M., Cai, Y. X., & Ng, P. K. L. (2009). Evolution of life history traits in Asian freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae) based on multilocus molecular phylogenetic analysis. Molecular Phylogenet Evolution, 52, 340–350.CrossRefGoogle Scholar
  219. Xue, J. Z., Liu, Y., Cumberlidge, N., & Wu, H. X. (2010). First report of developmental changes inside the eggs of the Chinese freshwater crab, Sinopotamon yangtsekiense Bott, 1967 (Potamoidea, Potamidae), with comments on its evolutionary significance. Contribution to Zoology, 79, 79–84.Google Scholar
  220. Yannicelli, B., & Castro, L. (2013). Ecophysiological constraints on the larvae of Pleuroncodes monodon and the implications for its reproductive strategy in poorly oxygenated waters of the Chile-Peru undercurrent. Journal of Plankton Research, 35, 566–581.CrossRefGoogle Scholar
  221. Yeo, D. C. J., Ng, P. K. L., Cumberlidge, N., Magalhães, C., Daniels, S. R., & Campos, M. R. (2008). Global diversity of crabs (Crustacea: Decapoda: Brachyura) in freshwater. Hydrobiologia, 595, 275–286.CrossRefGoogle Scholar
  222. Yeo, D. C. J., Cumberlidge, N., & Klaus, S. (2014). Advances in Freshwater Decapod Systematics and Biology. Leiden: Brill.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.MalenteGermany

Personalised recommendations