Advertisement

The Peruvian-Chilean Coastal Upwelling System

  • Jochen KämpfEmail author
  • Piers Chapman
Chapter

Abstract

This chapter describes the Peruvian-Chilean coastal upwelling system which is by far the most productive system in terms of pelagic fish among the Big Four coastal upwelling systems—a feature that is known as the Peruvian Puzzle. Also discussed are fluctuations of fish and bird abundance in the context of the El Niño Southern Oscillation, overfishing and influences of nutrient limitation and interactions with the oxygen minimum zone.

Keywords

Upwelling Oceanography Humboldt current Peruvian puzzle El Niño southern oscillation Marine biogeochemistry Marine ecology Ecological regime shifts Fisheries Fish stock variations Climate-change impacts 

References

  1. Aceituno, P. 1992. El Niño, the Southern Oscillation, and ENSO: Confusing names for a complex ocean-atmosphere interaction. Bulletin of the American Meteorological Society 73: 483–485.Google Scholar
  2. Alheit, J. 1987. Egg cannibalism versus egg predation: Their significance in anchovies. South African Journal of Marine Science 5: 467–470.CrossRefGoogle Scholar
  3. Alheit, J., and P. Bernal. 1993. Effects of physical and biological changes on the biomass yield of the Humboldt Current ecosystem. In Large Marine Ecosystems: Stress, Mitigation, and Sustainability, ed. K. Sherman, L.M. Alexander, and B.D. Gold, 53–68. Washington, D.C: American Association for the Advancement of Science.Google Scholar
  4. Alheit, J., and M. Niquen. 2004. Regime shifts in the Humboldt Current ecosystem. Progress in Oceanography 60: 201–222.CrossRefGoogle Scholar
  5. Antezana, T. 2002. Vertical distribution and diel migration of Euphausia mucronata in the oxygen minimum layer of the Humboldt Current. In Oceanography of the Eastern Pacific II, ed. J. Farber, 13–28. Ensenada, Mexico: CICESE.Google Scholar
  6. Arntz, W.E., V.A. Gallardo, D. Gutiérrez, E. Isla, L.A. Levin, J. Mendo, C. Neira, G.T. Rowe, J. Tarazona, and M. Wolff. 2006. El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences 6: 243–265.CrossRefGoogle Scholar
  7. Atkinson, L.P., A. Valle-Levinson, D. Figueroa, R. De Pol-Holz, V.A. Gallardo, W. Schneider, J.L. Blanco, and M. Schmidt. 2002. Oceanographic observations in Chilean coastal waters between Valdivia and Concepción. Journal of Geophysical Research 107: C7. doi: 10.1029/2001JC000991.CrossRefGoogle Scholar
  8. Ayón, P., M.I. Criales-Hernandez, R. Schwamborn, and H.J. Hirche. 2008. Zooplankton research off Peru: a review. Progress in Oceanography 79: 238–255.CrossRefGoogle Scholar
  9. Bakun, A. 1987. Monthly variability in the ocean habitat off Peru as deduced from maritime observations from 1953 to 1984. In Pauly, D., and I. Tsukayama (see below), p. 46–74.Google Scholar
  10. Bakun, A. 1996. Patterns in the ocean: Ocean processes and marine population dynamics. University of California Sea Grant, California, USA, in cooperation with Centro de Investigaciones Biologicas de Noroeste, La Paz, Baja California Sur, Mexico, 323 pp.Google Scholar
  11. Bakun, A., and S.J. Weeks. 2008. The marine ecosystem off Peru: what are the secrets of its fishery productivity and what might its future hold? Progress in Oceanography 79: 290–299.CrossRefGoogle Scholar
  12. Berghaus, H.K.W. 1837–1847. Berghaus’ Physikalischer Atlas. Gotha.Google Scholar
  13. Bernal, P.A., R. Ahumada, H. González, S. Pantoja, and A. Troncoso. 1989. Flujo de energía en un modelo trófico en la Bahía de Concepción. Biología Pesquera 18: 5–14.Google Scholar
  14. Bjerknes, J. 1966. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18: 820–829.CrossRefGoogle Scholar
  15. Bjerknes, J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review 97: 163–172.CrossRefGoogle Scholar
  16. Blanco, J.L., A. Thomas, M.-E. Carr, and P.T. Strub. 2001. Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile. Journal of Geophysical Research 106: 11451–11467.CrossRefGoogle Scholar
  17. Brainard, R., and D. McLain. 1987. Seasonal and interannual subsurface temperature variability off Peru, 1952 to 1984. In Pauly, D., and I. Tsukayama (see below), pp. 14–45.Google Scholar
  18. Brink, K., D. Halpern, A. Huyer, and R. Smith. 1983. The physical-environment of the Peruvian upwelling system. Progress in Oceanography 12(3): 285–305.CrossRefGoogle Scholar
  19. Broad, K. 1999. Climate, Culture and Peruvian Fisheries. Ph.D. Thesis, Lamont-Doherty Earth Observatory, Palisades, New York.Google Scholar
  20. Bruland, K.W., E.L. Ruea, G.J. Smitha, and G.R. DiTullio. 2005. Iron, macronutrients and diatom blooms in the Peru upwelling regime: Brown waters of Peru versus blue waters. Marine Chemistry 93: 81–103.CrossRefGoogle Scholar
  21. Canfield, D.E., F.J. Stewart, B. Thamdrup, L. De Brabandere, T. Dalsgaard, et al. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330(6009): 1375–1378.CrossRefGoogle Scholar
  22. Carr, M.-E., and E.J. Kearns. 2003. Production regimes in four eastern boundary current systems. Deep-Sea Research II 50: 3199–3221.CrossRefGoogle Scholar
  23. Carr, M.E., P.T. Strub, A.C. Thomas, and J.L. Blanco. 2002. Evolution of 1996-1999 La Niña and El Niño conditions off the western coast of South America: A remote sensing perspective. Journal of Geophysical Research 107(C12): 3236. doi: 10.1029/2001/JC001183.CrossRefGoogle Scholar
  24. Carrasco, S., and O. Lozano. 1989. Seasonal and long-term variations of zooplankton volumes in the Peruvian Sea, 1964–1987. In The Peruvian Upwelling Ecosystem: Dynamicsand Interactions, ed. D. Pauly, P. Muck, J. Mendo and I. Tsukyama, 82–85. ICLARM Conference Proceedings 18. IMARPE, GTZ, and ICLARM, Manila.Google Scholar
  25. Carrillo, C. 1892. Hidrografía océanica: Las corrientes océanicas y estudios de la Corriente Peruana ó de Humboldt. Boletín de la Sociedad Geográfica de Lima 2: 72–110.Google Scholar
  26. Castilla, J.C., N.A. Lagos, R. Guiñez and J. Largier. 2002. Embayments and nearshore retention of plankton: The Antofagasta Bay and other examples. In The Oceanography and Ecology of the Nearshore and Bays in Chile, ed. J.C. Castilla and J.L. Largier, 179–203. Santiago, Chile: Ediciones Universidad Católica de Chile.Google Scholar
  27. Chavez, F.P., and J.R. Toggweiler. 1995. Physical estimates of global new production: the upwelling contribution. In Upwelling in the Ocean: Modern Processes and Ancient Records, ed. C.P. Summerhayes, K.-C. Emeis, M.V. Angel, R.L. Smith and B. Zeitschel, 313–320. Chichester: Wiley.Google Scholar
  28. Chavez, F.P., J. Ryan, S.E. Lluch-Cotaand, and M. Ñiquen. 2003. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 299: 217–221.CrossRefGoogle Scholar
  29. Coale, K.H., K.S. Johnson, S.E. Fitzwater, S.P. Blain, T.P. Stanton, and T.L. Coley. 1998. Ironex-I, an in situ iron enrichment experiment: experimental design, implementation and results. Deep-Sea Research II 45: 919–945.CrossRefGoogle Scholar
  30. Codispoti, L.A., R.T. Barber and G.E. Friederich. 1989. Do nitrogen transformations in the poleward undercurrent off Peru and Chile have a globally significant influence? In Poleward Flows Along Eastern Ocean Boundaries, ed. S.J. Neshyba, C.H.K. Mooeres, R.L. Smith and R.T. Barber. New York: Springer. doi: 10.1029/CE034p0281.Google Scholar
  31. Corredor-Acosta, A., C.E. Morales, S. Hormazabal, I. Andrade, and M.A. Correa-Ramirez. 2015. Phytoplankton phenology in the coastal upwelling region off central-southern Chile (35° S–38° S): Time-space variability, coupling to environmental factors, and sources of uncertainty in the estimates. Journal of Geophysical Research 120(2): 813–831. doi: 10.1002/2014JC010330.Google Scholar
  32. Cubillos, L.A., E. Nunez, and R. Arcos. 1998. Produccion primaria requerida para sustenar el desembarque de peces pelagicos en Chile. Investigaciones marinas 26: 83–96.Google Scholar
  33. Cuevas, L.A., G. Danieri, B. Jacob, and P. Monteiro. 2004. Microbial abundance and activity in the seasonal upwelling area off Concepción (∼36° S), central Chile: a comparison of upwelling and non-upwelling conditions. Deep-Sea Research II 51: 2427–2440.CrossRefGoogle Scholar
  34. Cury, P., C. Roy, and V. Faure. 1998. Environmental constraints and pelagic fisheries in upwelling areas: the Peruvian puzzle. South African Journal of Marine Science 19: 159–167.CrossRefGoogle Scholar
  35. Cury, P., A. Bakun, R.J.M. Crawford, A. Jarre, R.A. Quiñones, L.J. Shannon, and H.M. Verheye. 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in ‘‘wasp-waist’’ ecosystems. ICES Journal of Marine Science 57: 603–618.CrossRefGoogle Scholar
  36. Daneri, G., V. Dellarossa, R. Quiñones, B. Jacob, P. Montero, and O. Ulloa. 2000. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Marine Ecology Progress Series 197: 41–49.CrossRefGoogle Scholar
  37. Deutsch, C., J.L. Sarmiento, D.M. Sigman, N. Gruber, and J.P. Dunne. 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445: 163–167.CrossRefGoogle Scholar
  38. Dezileau, L., O. Ulloa, D. Hebbeln, F. Lamy, J.L. Reyss and M. Fontugne. 2004. Iron control of past productivity in the coastal upwelling system off the Atacama Desert, Chile. Paleoceanography 19: PA3012. doi: 10.1029/2004PA001006.Google Scholar
  39. Djurfeldt, L. 1989. Circulation and mixing in a coastal upwelling embayment, Gulf of Arauco. Chile. Continental Shelf Research 9(11): 1003–1016.CrossRefGoogle Scholar
  40. Ducklow, H.W. 2000. Bacterial production and biomass in the oceans. In Microbial Ecology of the Oceans, ed. D. Kirchman, pp. 85–120. New York: Wiley-Liss.Google Scholar
  41. Duffy, D.C., and W.R. Siegfried. 1987. Historical variations in food consumption by breeding seabirds of the Humboldt and Benguela upwelling regions. In Seabirds: Feeding Biology and Role in Marine Ecosystems, ed. J.P. Croxall, 327–346. Cambridge University Press.Google Scholar
  42. Echevin, V., O. Aumont, J. Ledesmaand, and G. Flores. 2008. The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A modeling study. Progress in Oceanography 79: 167–176.CrossRefGoogle Scholar
  43. Eissler, Y., and R.A. Quiñones. 1999. Microplanktonic respiration off northern Chile during El Niño 1997–1998. Journal of Plankton Research 21: 2263–2283.CrossRefGoogle Scholar
  44. Enfield, D.B., M.P. Cornejo-Rodriguez, R.L. Smith and P.A. Newberger. 1987. The equatorial source of propagating variability along the Peru coast during the 1982–1983 El Niño. Journal of Geophysical Research 92: 14,335–14,346. doi: 10.1029/JC092iC13p14335.Google Scholar
  45. Escribano, R. 1998. Population dynamics of Calanus chilensis in the Chilean Eastern Boundary Humboldt Current. Fisheries Oceanography 7: 245–251.CrossRefGoogle Scholar
  46. Escribano, R., and P. Hidalgo. 2000. Influence of El Niño and La Niña on the population dynamics of Calanus chilensis in the Humboldt Current ecosystem of northern Chile. ICES Journal of Marine Science 57: 1867–1874.CrossRefGoogle Scholar
  47. Escribano, R., S.A. Rosales, and J.L. Blanco. 2004. Understanding upwelling circulation off Antofagasta (northern Chile): a 3-dimensional numerical-modeling approach. Continental Shelf Research 24: 37–53.CrossRefGoogle Scholar
  48. Fagan, B. 1999. Floods, Famines and Emperors: El Niño and the Fate of Civilizations, 119–138. New York: Basic Books.Google Scholar
  49. Feely, R.A., J. Boutin, C.E. Cosca, Y. Dandonneau, J. Etcheto, H.Y. Inoue, M. Ishii, C. Le Quéré, D.J. Mackey, M. McPhaden, N. Metzl, A. Poisson, and R. Wanninkhof. 2002. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep Sea Research II 49(13–14): 2443–2469. doi: 10.1016/S0967-0645(02)00044-9.CrossRefGoogle Scholar
  50. Figueroa, D. 2002. Forcing of physical exchanges in the nearshore Chilean ocean. In The Oceanography and Ecology of the Nearshore and Bays in Chile, ed. J.C. Castilla, and J.L. Largier, pp. 31–43. Santiago, Chile: Ediciones Universidad Católica de Chile.Google Scholar
  51. Figueroa, D., and C. Moffat. 2000. On the influence of topography in the induction of coastal upwelling along the Chilean coast. Geophysical Research Letters 27: 3905–3908.CrossRefGoogle Scholar
  52. Fréon, P., M. Barange, and J. Arístegui. 2009. Eastern boundary upwelling ecosystems: Integrative and comparative approaches. Progress in Oceanography 83: 1–14.CrossRefGoogle Scholar
  53. Friedrich, G.E., and L. Codispoti. 1981. The effects of mixing and regeneration on the nutrient content of upwelling waters off Peru. In Coastal Upwelling, ed. F.A. Richards, 221–227. Washington, D.C., USA: American Geophysical Union.Google Scholar
  54. Friederich, G.E., J. Ledesma, O. Ulloa, and F.P. Chavez. 2008. Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Progress in Oceanography 79(2–4): 156–166.CrossRefGoogle Scholar
  55. Gallardo, V.A. 1963. Notas sobre la densidad de la fauna bentónica en el sublitoral del norte de Chile. Gayana Oceanológica 10: 3–15.Google Scholar
  56. Glantz, M.H. 1979. Science, politics, and economics of the Peruvian anchovy fishery. Marine Policy, July, 201–210.Google Scholar
  57. González, H.E., P. Bernal, and R. Ahumada. 1987. Desarrollo de dominancia local en la taxocenosis de fitoplancton de Bahía de Concepción, Chile, durante un evento de surgencia. Revista Chilena de Historia Natural 60: 19–35.Google Scholar
  58. González, H.E., S. Pantoja, J. Iriarte, and P.A. Bernal. 1989. Winter-spring variability of size fractioned autotrophic biomass in Concepción Bay, Chile. Journal of Plankton Research 11: 1157–1167.CrossRefGoogle Scholar
  59. González, H.E., G. Daneri, D. Figueroa, J.L. Iriarte, N. Lefevre, G. Pizarro, R. Quiñones, M. Sobarzo, and A. Troncoso. 1998. Primary production and its fate in the pelagic food web and deep-sea, and ocean-atmosphere CO2 exchange in the northern Humboldt Current (23°S): possible effects of the 1997–1998 El Niño in Chile. Revista Chilena de Historia Natural 71: 429–458.Google Scholar
  60. González, H.E., V.C. Ortíz, and M. Sobarzo. 2000. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23°S), before and during the 1997–1998 El Niño. Journal of Plankton Research 22: 499–529.CrossRefGoogle Scholar
  61. González, H.E., R. Giesecke, C.A. Vargas, A. Pávez, J. Iriarte, P. Santibáñez, L. Castro, R. Escribano, and F. Pages. 2004. Carbon cycling through the pelagic foodweb in the northern Humboldt Current off Chile (23° S). ICES Journal of Marine Science 61: 572–584.CrossRefGoogle Scholar
  62. González, R.R., and R.A. Quiñones. 2002. Ldh activity in Euphausia mucronata and Calanus chilensis: implications for vertical migration behaviour. Journal of Plankton Research 24: 1349–1356.CrossRefGoogle Scholar
  63. Gordon, D.C., P.R. Boudreau, K.H. Mann, J.-E. Ong, W.L. Silvert, S.V. Smith, G. Wattayakorn, F. Wulff and T. Yanagi. 1996. LOICZ Biogeochemical Modelling Guidelines. LOICZ Reports and Studies, 5, LOICZ Core Project Office, Den Burg-Texel, Netherlands, 104 pp.Google Scholar
  64. Goyet, C., F.J. Millero, D.W. O’Sullivan, G. Eischeid, S.J. McCue and R.G.J. Bellerby. 1998. Temporal variations of pCO2 in surface seawater of the Arabian sea in 1995. Deep Sea Res I 45(4–5): 609–623.Google Scholar
  65. Gruber, N. 2004. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. In The Ocean Carbon Cycle and Climate, ed. M. Follows and T. Oguz, 97–148. Dordrecht: NATO ASI Series, Kluwer Academic.Google Scholar
  66. Grünewald, A., C. Morales, H.E. González, C. Sylvester, and L. Castro. 2002. Grazing impact of copepod assemblages and gravitational flux in coastal and oceanic waters off central Chile during two contrasting seasons. Journal of Plankton Research 24: 55–68.CrossRefGoogle Scholar
  67. Gunther, E.R. 1936. A report on oceanographic investigations in the Peru Coastal Current. Discovery Reports 13: 107–276.Google Scholar
  68. Gutiérrez, D. 2000. Bioperturbación y macrofauna en fondos sublitorales de un área de surgencias frente a Chile Central (36°30S): variación espacial y temporal en el período 1997–1999. Ph.D. thesis, Universidad de Concepción, Concepción, Chile.Google Scholar
  69. Gutiérrez, D., E. Enriquez, S. Purca, L. Quipúzcoa, R. Marquina, G. Flores and M. Graco. 2008. Oxygenation episodes on the continental shelf of central Peru: Remote forcing and benthic ecosystem response. Progress in Oceanography 79: 177–189. doi: 10.1016/j.pocean.2008.10.025.Google Scholar
  70. Gutiérrez, D., et al. 2011. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid twentieth century. Journal of Geophysical Research 38: L07603. doi: 10.1029/2010GL046324.Google Scholar
  71. Halpin, P.M., P.T. Strub, W.T. Peterson, and T.R. Baumgartner. 2004. An overview of interactions among oceanography, marine ecosystems, climatic and human disruptions along the eastern margins of the Pacific Ocean. Revista Chilena de Historia Natural 77: 371–409.CrossRefGoogle Scholar
  72. Hebbeln, D., M. Marchant, T. Freudenthal, and G. Wefer. 2000. Surface sediment distribution along the Chilean continental slope related to upwelling and productivity. Marine Geology 164: 119–137.CrossRefGoogle Scholar
  73. Hidalgo, P., R. Escribano, and C.E. Morales. 2005. Ontogenetic vertical distribution and diel migration of the copepod Eucalanus inermis in the oxygen minimum zone off northern Chile (20–21°S). Journal of Plankton Research 27: 519–529.CrossRefGoogle Scholar
  74. Hormazábal, S., G. Shaffer, L. Letelier, and O. Ulloa. 2001. Local and remote forcing of sea surface temperature in the coastal upwelling system off Chile. Journal of Geophysical Research 106: 16657–16671.CrossRefGoogle Scholar
  75. Humboldt, A. 1846. Cosmos: A Sketch of a Physical Description of the Universe. London: Green and Longmans.Google Scholar
  76. Huyer, A. 1980. The offshore structure and subsurface expression of sea-level variations off Peru, 1976-1977. Journal of Physical Oceanography 10(11): 1755–1768.CrossRefGoogle Scholar
  77. Iriarte, J.L., and H.E. González. 2004. Phytoplankton size structure during and after the 1997/1998 El Niño in a coastal upwelling area of the northern Humboldt Current System. Marine Ecology Progress Series 269: 83–90.CrossRefGoogle Scholar
  78. Iriarte, J.L., G. Pizarro, V.A. Troncoso, and M. Sobarzo. 2000. Primary production and biomass of size-fractionated phytoplankton off Antofagasta, Chile (23–24°S) during pre-El Niño and El Niño 1997. Journal of Marine Systems 26: 37–51.CrossRefGoogle Scholar
  79. Kawasaki, T. 1983. Why do some pelagic fishes have wide fluctuation in their numbers? Biological basis of fluctuation from the viewpoint of evolutionary ecology. FAO Fishery Report 291(3): 1065–1080.Google Scholar
  80. Kessler, W. 2006. The circulation of the eastern tropical Pacific: A review. Progress in Oceanography 69(2–4): 181–217.CrossRefGoogle Scholar
  81. Klyashtorin, L., and A. Lyubushin. 2007. Cyclic Climate Changes and Fish Productivity. Moscow: VNIRO. 223 pp.Google Scholar
  82. Lam, P., G. Lavik, M.M. Jensen, J. van de Vossenberg, M. Schmid, et al. 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences USA 106: 4752–4757.CrossRefGoogle Scholar
  83. Lluch-Belda, D., R.A. Schwartzlose, R. Serra, R.H. Parrish, T. Kawasaki, D. Hedgecock, and R.J.M. Crawford. 1992. Sardine and anchovy regime fluctuations of abundance in four regions of the world oceans: a workshop report. Fisheries Oceanography 1(4): 339–347.CrossRefGoogle Scholar
  84. Lukas, R. 1986. The termination of the Equatorial Undercurrent in the Eastern Pacific. Progress in Oceanography 16(2): 63–90.CrossRefGoogle Scholar
  85. Marín, V.H., and G.R. Olivares. 1999. Seasonality of primary productivity in Mejillones del Sur Bay (Chile): a process-functional approach. Revista Chilena de Historia Natural 72: 629–641.Google Scholar
  86. Marín, V.H., and L.E. Delgado. 2007. Lagrangian observations of surface coastal flows north of 30°S in the Humboldt Current System. Continental Shelf Research 27: 731–743.CrossRefGoogle Scholar
  87. Marín, V.H., L.E. Delgado, and R. Escribano. 2003a. Upwelling shadows at Mejillones Bay (northern Chilean coast): a remote sensing in situ analysis. Investigaciones Marinas, Valparaíso 31: 47–55.Google Scholar
  88. Marín, V.H., L.E. Delgado, and G. Luna-Jorquera. 2003b. S-Chlorophyll squirts at 30°S off the Chilean coast (eastern South Pacific): feature-tracking analysis. Journal of Geophysical Research 108(C12): 3378. doi: 10.1029/2003JC001935.CrossRefGoogle Scholar
  89. Martin, J.H., and R.M. Gordon. 1988. Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Research A 35: 177–196.CrossRefGoogle Scholar
  90. Martin, J.H., S.E. Fitzwater, R.M. Gordon, C.N. Hunter, and S.J. Tanner. 1993. Iron, primary production and carbon nitrogen flux studies during the JGOFS North-Atlantic bloom experiment. Deep-Sea Research II 40: 115–134.CrossRefGoogle Scholar
  91. Mendo, J., L. Pizarro, and S. Castillo. 1987. Monthly upwelling and turbulence indices off the Peruvian coast at Callao and Trujillo during the period 1953–1983. In Pauly, D., and I. Tsukayama (see below), pp. 75–88.Google Scholar
  92. Mesías, J.M., R.P. Matano, and P.T. Strub. 2003. Dynamical analysis of the upwelling circulation off central Chile. Journal of Geophysical Research 108(C3): 3085. doi: 10.1029/2001JC001135.CrossRefGoogle Scholar
  93. Milessi, A., J. Sellanes, V. Gallardo, and C.B. Lange. 2005. Osseous skeletal material and fish scales in marine sediments under the oxygen minimum zone off northern and central Chile. Estuarine, Coastal and Shelf Science 64: 185–190.CrossRefGoogle Scholar
  94. Montecino, V., and C.B. Lange. 2009. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Progress in Oceanography 83(1–4, Sp. Iss. SI): 65–79.Google Scholar
  95. Montecino, V., R. Astoreca, G. Alarcón, L. Retamal, and G. Pizarro. 2004. Bio-optical characteristics and primary productivity during upwelling and non-upwelling conditions in a highly productive coastal ecosystem off central Chile (~ 36°S). Deep-Sea Research II 51: 2413–2426.CrossRefGoogle Scholar
  96. Montecino, V., T.P. Strub, F. Chavez, A. Thomas, J. Tarazona and T. Baumgartner. 2006. Bio-physical interactions off western south-America. In The Global Coastal Ocean. Interdisciplinary Regional Studies and Syntheses, ed. A.R. Robinson and K. Brink, 329–390. Cambridge, MA: Harvard University Press.Google Scholar
  97. Moore, C.M., et al. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience 6: 701–710.CrossRefGoogle Scholar
  98. Moraga, J., E. Valdebenito, and J. Rutllant. 2001. Condiciones oceanográficas durante la fase de relajación de un evento de surgencia invernal frente a Punta Lengua de Vaca, Coquimbo. Investigaciones Marinas, Valparaíso 29: 59–71.Google Scholar
  99. Morales, C.E., and C.B. Lange. 2004. Oceanographic studies in the Humboldt Current System off Chile: an introduction. Deep-Sea Research II 51: 2345–2348.CrossRefGoogle Scholar
  100. Morales, C.E., J.L. Blanco, M. Braun, H. Reyes, and N. Silva. 1996. Chlorophyll-a distribution and associated oceanographic conditions in the upwelling region off northern Chile during the winter and spring 1993. Deep-Sea Research I 43: 267–289.CrossRefGoogle Scholar
  101. Morales, C., S. Hormazabal, and J.L. Blanco. 1999. Interannual variability in the mesoscale distribution of the depth of the upper boundary of the oxygen minimum layer off northern Chile (18°–24° S): Implications for the pelagic system and biogeochemical cycling. Journal of Marine Research 57: 909–932.CrossRefGoogle Scholar
  102. Muñoz, P., J. Sellanes, C. Neira, M. Palma, L. Levin, S. Pantoja, C.B. Lange and S.A. Salamanca. 2005. Sedimentación v/s mezcla biológica en sedimentos del norte de Chile (Iquique, 20°S) asociados a la zona de mínimo oxígeno (ZMO). Libro de Resúmenes, Congreso de Ciencias del Mar, Sociedad de Ciencias del Mar de Chile, Chile, May, 172.Google Scholar
  103. Neira, S., and H. Arancibia. 2004. Trophic interactions and community structure in the upwelling system off Central Chile (33–39° S). Journal of Experimental Marine Biology and Ecology 312: 349–366.CrossRefGoogle Scholar
  104. Neira, C., J. Sellanes, A. Soto, D. Gutiérrez, and V.A. Gallardo. 2001. Meiofauna and sedimentary organic matter off Central Chile: response to changes caused by the 1997–1998 El Niño. Oceanologica Acta 24: 313–328.CrossRefGoogle Scholar
  105. Ochoa, N., et al. 2010. Intra- and interannual variability of nearshore phytoplankton biovolume and community changes in the northern Humboldt Current system. Journal of Plankton Research 32: 843–855.CrossRefGoogle Scholar
  106. Olivares, G. 2001. Mecanismos de interacción físico-químicas en una zona de surgencia costera: retención de larvas y cierre del ciclo de vida de Euphausia mucronata. M.Sc. thesis, Universidad de Chile, Santiago, Chile.Google Scholar
  107. Olivieri, R.A., and F.P. Chavez. 2000. A model of plankton dynamics for the coastal upwelling system of Monterey Bay, California. Deep-Sea Research II 47: 1077–1106.CrossRefGoogle Scholar
  108. Ortlieb, L., R. Escribano, R. Follegati, O. Zuniga, I. Kong, L. Rodriguez, J. Valdes, N. Guzmán, and P. Iratchet. 2000. Recording of ocean-climate changes during the last 2,000 years in a hypoxic marine environment off northern Chile (23° S). Revista Chilena de Historia Natural 73: 221–242.CrossRefGoogle Scholar
  109. Palma, W., R. Escribano, and S.A. Rosales. 2006. Modeling study of seasonal and inter-annual variability of circulation in the coastal upwelling site of the El Loa River off northern Chile. Estuarine, Coastal and Shelf Science 67: 93–107.CrossRefGoogle Scholar
  110. Pantoja, S., J. Sepulveda, and H.E. González. 2004. Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile. Deep-Sea Research I 51: 55–70.CrossRefGoogle Scholar
  111. Parrish, R.H., A. Bakun, D.M. Husby and C.S. Nelson. 1983. Comparative climatology of selected environmental processes in relation to eastern boundary current pelagic fish reproduction. In Proceedings of the expert consultation to examine changes in abundance and species composition of neritic fish resources, ed. G.D. Sharp and J. Csirke. FAO Fishery Reports 291: 731–778.Google Scholar
  112. Paulmier, A., D. Ruiz-Pino, and V. Garçon. 2008. The oxygen minimum zone (OMZ) off Chile as intense source of CO2 and N2O. Continental Shelf Research 28: 2746–2756.CrossRefGoogle Scholar
  113. Pauly, D., and M. Soriano. 1987. Monthly spawning stock and egg production of Peruvian anchoveta (Engraulis ringens), 1953 to 1982. In Pauly, D., and I. Tsukayama (see below), pp. 167–178.Google Scholar
  114. Pauly, D., and I. Tsukayama. 1987. The Peruvian anchoveta and its upwelling ecosystem: three decades of change. Instituto del Mar del Perú (IMARPE), Callao, Perú; Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), GmbH, Eschborn, Federal Republic of Germany; and International Center for living Aquatic Resources Management, Manila, Philippines. ICLARM Studies and Reviews 15: 351. http://pdf.usaid.gov/pdf_docs/PNAAY567.pdf. Accessed 5 April 2016.
  115. Pennington, J.T., K.L. Mahoney, V.S. Kuwahara, D.D. Kolber, R. Calienes, and F.P. Chavez. 2006. Primary production in the eastern tropical Pacific: A review. Progress in Oceanography 69(2–4): 285–317.CrossRefGoogle Scholar
  116. Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. Journal of Geophysical Research 110(C10021). doi: 10.1029/2005JC002945.
  117. Peterson, W.T., D.F. Arcos, G.B. McManus, H. Dam, D. Bellantoni, T. Johnson, and P. Tiselius. 1988. The nearshore zone during coastal upwelling: Daily variability and coupling between primary and secondary production off central Chile. Progress in Oceanography 20: 1–40.CrossRefGoogle Scholar
  118. Quinones, R.A., M.H. Gutierrez, G. Daneri, D.G. Aguilar, H.E. Gonzalez, and F.P. Chavez. 2010. The Humboldt Current System. In Liu, Carbon and Nutrient Fluxes in Continental Margins, Global Change—The IGBP Series, ed. K.-K.L. Atkinson, R. Quinones, and L. Talaue-McManus, pp. 44–64. Berlin-Heidelberg: Springer.Google Scholar
  119. Ramos, M., O. Pizarro, L. Bravo, and B. Dewitte. 2006. Seasonal variability of the permanent thermocline off northern Chile. Geophysical Research Letters 33: L09608. doi: 10.1029/2006GL025882.Google Scholar
  120. Rojas, B.R. 1971. Some observations on the feeding of the Peruvian anchoveta Engraulis ringens J. in two regions of the Peruvian coast. In Fertility of the Sea. Volume 2, ed. J.D. Costlow, 417–440. New York: Gordon and Breach Scientific Publishing.Google Scholar
  121. Rosenberg, R., W. Arntz, E. Chumán de Flores, L.A. Flores, G. Carbajal, I. Finger, and J. Tarazona. 1983. Benthos biomass and oxygen deficiency in the Peruvian upwelling system. Journal of Marine Research 41: 263–279.CrossRefGoogle Scholar
  122. Rutllant, J.A. 1993. Coastal lows and associated southerly wind events in north-central Chile. Reprints 4th International Conference on Southern Hemisphere Meteorology and Oceanography, 268–269. Boston: American Meteorological Society.Google Scholar
  123. Rutllant, J.A., H. Fuenzalida, R. Torres, and D. Figueroa. 1998. Land-air-sea interaction at the Antofagasta region (Chile, 23°S). The DICLIMA experiment. Revista Chilena de Historia Natural 71: 405–427.Google Scholar
  124. Rutllant, J.A., B. Rosenbluth, and S. Hormazábal. 2004a. Intraseasonal variability of wind-forced coastal upwelling off central Chile (30°S). Continental Shelf Research 24: 789–804.CrossRefGoogle Scholar
  125. Rutllant, J.A., I. Masotti, J. Calderon, and S.A. Vega. 2004b. A comparison of spring coastal upwelling off central Chile at the extremes of the 1996–1997 ENSO cycle. Continental Shelf Research 24: 773–787.CrossRefGoogle Scholar
  126. Ryther, J.H. 1969. Photosynthesis and fish production in the sea. Science 166: 72–76.CrossRefGoogle Scholar
  127. Saito, M.A., J.W. Moffett and G.R. DiTullio. 2004. Cobalt and nickel in the Peru upwelling region: A major flux of labile cobalt utilized as a micronutrient. Global Biogeochemical Cycles 18: GB4030. doi: 10.1029/2003GB002216.Google Scholar
  128. Schunck, H., G. Lavik, D.K. Desai, T. Großkopf, T. Kalvelage, et al. 2013. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS ONE 8(8): e68661. doi: 10.1371/journal.pone.0068661.CrossRefGoogle Scholar
  129. Schreiber, M.A., M. Ñiquen and M. Bouchon. 2011. Coping strategies to deal with environmental variability and extreme climatic events in the Peruvian anchovy fishery. Sustainability 3: 823–846. doi: 10.3390/su3060823.Google Scholar
  130. Shaffer, G., S. Hormázabal, O. Pizarro, and S. Salinas. 1999. Seasonal and interannual variability of currents and temperature off central Chile. Journal of Geophysical Research 104: 29951–29961.CrossRefGoogle Scholar
  131. Smith, R.L., D.B. Enfield, T.S. Hopkins and R.D. Pillsbury. 1971. The circulation in an upwelling ecosystem: The Pisco Cruise. Investigation Pesquera 35(1): 9–24.Google Scholar
  132. Stewart, R.H. 2008. Introduction to Physical Oceanography. http://oceanworld.tamu.edu/resources/ocng_textbook/PDF_files/book_pdf_files.html. Accessed 31 March 2016.
  133. Strub, P.T., J.M. Mesías, V. Montecino and J. Ruttlant. 1998. Coastal ocean circulation off western South America. In The Sea, ed. A.R. Robinson and K.H. Brink, Vol. 11, Wiley, 273–313.Google Scholar
  134. Sverdrup, H.U. 1930. Some oceanographic results of the CARNEGIE’s Work in the Pacific—The Peruvian Current. Transactions of the American Geophysical Union 257–264.Google Scholar
  135. Tans, P.P., I.Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247: 1431–1438.CrossRefGoogle Scholar
  136. Thiel, M., E.C. Macaya, E. Acuna, W.E. Arntz, H. Bastias, et al. 2007. The Humboldt Current System of northern and central Chile. Oceanography and Marine Biology: An Annual Review 45: 195–344.Google Scholar
  137. Thomas, A.C., M.E. Carr, and P.T. Strub. 2001. Chlorophyll variability in Eastern Boundary Currents. Geophysical Research Letters 28: 3421–3424.CrossRefGoogle Scholar
  138. Thomas, A., P. Strub, M. Carr, and R. Weatherbee. 2004. Comparisons of chlorophyll variability between the four major global eastern boundary currents. International Journal of Remote Sensing 25(7–8): 1443–1447.CrossRefGoogle Scholar
  139. Torres, R. 1995. Condiciones oceanográficas y baja concentración de clorofila frente a Coquimbo, Chile (Lat. 30° S) durante 1992–1994. M.Sc. thesis, Universidad de Concepción, Concepción, Chile.Google Scholar
  140. Torres, R., D.R. Turner, N. Silva and J. Rutllant. 1999. High short-term variability of CO2 fluxes during an upwelling event off the Chilean coast at 30° S. Deep Sea Research I 46: 1161–1179.Google Scholar
  141. Trenberth, K.E. 1977. The definition of El Niño. Bulletinof the American Meteorological Society 78: 2771–2777.CrossRefGoogle Scholar
  142. Trenberth, K.E., and D.P. Stepaniak. 2001. Indices of El Niño evolution. Journal of Climate 14: 1697–1701.CrossRefGoogle Scholar
  143. Troncoso, V.A., G. Daneri, L.A. Cuevas, B. Jacob, and P. Montero. 2003. Bacterial carbon flow in the Humboldt Current System off Chile. Marine Ecology Progress Series 250: 1–12.CrossRefGoogle Scholar
  144. Tsukayama, I. 1966. El número de branquispinas como carácter diferencial de sub-poblaciones de anchoveta (Engraulis ringens Jenyns) en la costa del Perú. In Memorias 1er. Seminario Latino-Americano sobre el Océano Pacífico Oriental, 139–145. Universidad Nacional Mayor de San Marcos, Lima, Perú.Google Scholar
  145. Tsunogai, S., S. Watanabe, and T. Sato. 1999. Is there a ‘‘continental shelf pump’’ for the absorption of atmospheric CO2? Tellus Series B 51: 701–712.CrossRefGoogle Scholar
  146. Ulloa, O., R. Escribano, S. Hormazábal, R. Quiñones, R. Gonzalez, and M. Ramos. 2001. Evolution and biological effects of the 1997–98 El Niño in the upwelling ecosystem off northern Chile. Geophysical Research Letters 28: 591–1594.CrossRefGoogle Scholar
  147. van de Vossenberg, J., J.E. Rattray, W. Geerts, B. Kartal, L. van Niftrik L, E.G. van Donselaar J.S. Sinninghe Damsté, M. Strous, and M.S. Jetten. 2008. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environmental Microbiology 10: 3120–3129.Google Scholar
  148. Van Mooy, B.A.S., R.G. Keil, and A.H. Devol. 2002. Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochimica et Cosmochimica Acta 66: 457–465.CrossRefGoogle Scholar
  149. Walsh, J.J. 1981. A carbon budget for overfishing off Perú. Nature 290: 300–304.CrossRefGoogle Scholar
  150. Wooster, W.S. 1970. Eastern boundary currents in the South Pacific. In Scientific Exploration of the South Pacific, ed. W.S. Wooster, 60–68. Washington, D.C.: National Academy of Sciences.Google Scholar
  151. Wyrtki, K. 1966. Oceanography of the eastern equatorial Pacific Ocean. Oceanography & Marine Biology—An Annual Review 4: 33–68.Google Scholar
  152. Yáñez, E., M.A. Barbieri, C. Silva, K. Nieto, and F. Espíndola. 2001. Climate variability and pelagic fisheries in northern Chile. Progress in Oceanography 49: 581–596.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Flinders UniversityAdelaideAustralia
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations