Skip to main content

Quantum Manifestations of Classical Stochasticity

  • Chapter
  • First Online:
Book cover Chaos: Concepts, Control and Constructive Use

Part of the book series: Understanding Complex Systems ((UCS))

  • 1524 Accesses

Abstract

After almost a hundred years of development, quantum mechanics has become a universal picture of the world. All its predictions are correct for every observable scale of energy. However, this does not mean that from time to time, quantum mechanics does not face some new challenges. A serious conceptual problem, defined in the second part of the last century, took the name of quantum chaos. The point is that on the one hand, the energy spectrum of every quantum system with finite motion is discrete, and thus its evolution is quasiperiodic; but on the other hand, the correspondence principle requires the transition to classical mechanics that demonstrates not only regular modes but also the chaotic ones. To solve this problem, we have to answer first this question: how should we understand the statement that one theory is a limiting case of another? [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berry, M.: In: Giannoni, M.-J., Voros, A., Zinn-Justin, J. (eds.) Chaos and Quantum Physics. Les Houches, Session LII, pp. 251–304. Elsevier Science Publisher (1991)

    Google Scholar 

  2. Chirikov, B.V.: Open Syst. Inform. Dyn. 4, 241–280 (1997)

    Article  Google Scholar 

  3. Kolmogorov, A.N.: Russ. Math. Surv. 38 (4), 27–36 (1983)

    Google Scholar 

  4. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd ed. Pergamon Press, London (1976)

    MATH  Google Scholar 

  5. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, London (1982)

    MATH  Google Scholar 

  6. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  MATH  Google Scholar 

  7. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  8. Selberg, A.: J. Indian Math. Soc. 20, 47–87 (1956)

    MathSciNet  Google Scholar 

  9. Gutzwiller, M.: Chaos in Classical and Quantum Mechanics. Springer, Berlin (1991)

    MATH  Google Scholar 

  10. Toda, M.: Phys. Lett. 48, 335–240 (1974)

    Article  MathSciNet  Google Scholar 

  11. Brumer, P.: Chem. Phys. 47, 201–269 (1981)

    Google Scholar 

  12. Bolotin, Yu.L., Gonchar, V.YU., Inopin, E.V.: Yad. Phys. 45, 350–356 (1987)

    Google Scholar 

  13. Eizenberg, J., Greiner, W.: Microscopic Theory of the Nucleus. North-Holland, Amsterdam/London (1976)

    Google Scholar 

  14. Mosel, V., Greiner, W.: Z. Phys. 217, 256 (1968)

    Article  ADS  Google Scholar 

  15. Bartz, B.I., Bolotin, Yu.L., Inopin, E.V., et al.: Metod Hartri-Foka v Teorii Yadra. Naukova Dumka, Kiev (1982)

    Google Scholar 

  16. Henon, M., Heiles, C.: Astron. J. 69, 73–79 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  17. Berezovoj, V.P., Bolotin, Yu.L, Gonchar, V.Yu., Granovsky, M.Ya.: Part. Nucl. 34 (2), 388 (2003)

    Google Scholar 

  18. Poston, T., Stewart, I.: Catastrophe Theory and Its Applications. Dover, New York (1998)

    MATH  Google Scholar 

  19. Feit, M.D., Fleck, J.A. Jr., Steiger, A.: J. Comput. Phys. 47, 412–433 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wigner, E.P.: Ann. Math. 62, 548–564 (1955)

    Article  MathSciNet  Google Scholar 

  21. Porter, C.E.: In: Porter C.E. (ed.) Statistical Theories of Spectra: Fluctuations. Academic, New-York/London (1965)

    Google Scholar 

  22. Dyson, F.J.: J. Math. Phys. 3 (1), 140–156 (1962)

    Google Scholar 

  23. Mehta, M.I.: In: Porter C.E. (ed.) Random Matrices and Statistical Theory of Energy Levels. Academic, New-York/London (1967)

    Google Scholar 

  24. Bohigas, O., Giannoni, M., Schmit, C.: Phys. Rev. Lett. 52, 1–4 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. Seligman, T.H., Nishioka, H. (eds.): Quantum Chaos and Statistical Nuclear Physics. Springer, Heidelberg (1986)

    Google Scholar 

  26. Seligman, T., Verbaarshot, J., Zirnbauer, M.: Phys. Rev. Lett. 53, 215–218 (1984)

    Article  ADS  Google Scholar 

  27. Bohigas, O., Hag, R.V., Pandey, A.: Phys. Rev. Lett. 54, 645–649 (1985)

    Article  ADS  Google Scholar 

  28. Haake, F.: Quantum Signatures of Chaos. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  29. Chirikov, B.: Phys. Rep. 52, 263–379 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  30. Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., Wong, S.S.: Rev. Mod. Phys. 53, 385–479 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  31. Berry, M.V., Robnik, M.: J. Phys. A 17 (12), 2413–2421 (1984)

    ADS  Google Scholar 

  32. Bogomolny, E.B.: JETF Lett. 41 (2), 55–58 (1985)

    Google Scholar 

  33. Stöckmann, H.J.: Quantum Chaos: An Introduction. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  34. Dietz, B., Richter, A.: Chaos 25, 097601 (2015)

    Article  ADS  Google Scholar 

  35. Brack, M., Bhaduri, R.K: Semiclassical Physics. Wesley, New York (1997)

    MATH  Google Scholar 

  36. Odlyzko, A.M.: AT and T Bell Lab, preprint (1989)

    Google Scholar 

  37. Schnirelman, A.I.: Usp. Mat. Nauk 29, 181–182 (1974)

    Google Scholar 

  38. Berry, M.V.: Philos. Trans. R. Soc. A 287, 237–371 (1977)

    Article  ADS  Google Scholar 

  39. Hutchinson, J.S., Wyatt, R.E.: Chem. Phys. Lett. 72 (2), 378–384 (1980)

    Google Scholar 

  40. Berry, M.V.: J. Phys. A 10 (12), 2083 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  41. McDonald, S.W., Kaufman, A.N.: Phys. Rev. Lett. 42 (18), 1189–1191 (1979)

    Google Scholar 

  42. Heller, E.J.: Phys. Rev. Lett. 53 (16), 1515–1518 (1984)

    Google Scholar 

  43. Nordholm, K.S.J., Rice, S.A.: J. Chem. Phys. 61 (1), 203–223 (1974)

    Google Scholar 

  44. Stratt, R.M., Handy, C.N., Miller, W.H.: J. Chem. Phys. 71 (8), 3311–3322 (1979)

    Article  ADS  Google Scholar 

  45. Berezovoj, V.P., Bolotin, Yu.L., Cherkaskiy, V.A.: Phys. Lett. A 323, 218–223 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolotin, Y., Tur, A., Yanovsky, V. (2017). Quantum Manifestations of Classical Stochasticity. In: Chaos: Concepts, Control and Constructive Use. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-42496-5_9

Download citation

Publish with us

Policies and ethics