Skip to main content

Magmatism in the Tyrrhenian Sea Region: An Introductory Overview

  • Chapter
  • First Online:
Cenozoic Volcanism in the Tyrrhenian Sea Region

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Cenozoic magmatism in the Tyrrhenian Sea region exhibits a wide range of major, trace element, and radiogenic isotope characteristics. Based on petrological and trace element signatures, especially LILE/HFSE ratios of mafic rocks, two main families of magmas are recognised respectively showing arc-type (orogenic) and intraplate (anorogenic) compositional features. Orogenic magmas have calcalkaline, shoshonitic and potassic alkaline affinities, and are spread over the entire Tyrrhenian region becoming younger eastward, from the Oligo-Miocene volcanic belt of Sardinia to the young to active calcalkaline to potassic alkaline volcanoes of the Italian peninsula and the southeastern Tyrrhenian Sea. Large volumes of Quaternary potassic and ultrapotassic rocks in central Italy represent the most important magma types of young orogenic activity. Anorogenic rocks include tholeiites to Na-alkaline compositions and occur in Sardinia, in the Tyrrhenian Sea basin and Sicily. No clear age polarity is observed for anorogenic rocks. Areal distribution, ages, and major, trace element and radiogenic isotope compositions allow recognising several distinct volcanic provinces. Except for a few rhyolites and granitoid rocks from Tuscany, the bulk of magmas is of mantle origin, testifying to extremely heterogeneous upper mantle sources. Geochronological, petrological and isotopic data suggest that multiple metasomatic events over compositionally variable pre-metasomatic mantle rocks are responsible for this heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Incompatible elements are not hosted by common igneous rock-forming minerals and prefer to go into the liquid during melting and magma crystallization.

References

  • Alagna K, Peccerillo A, Martin S, Donati D (2010) Tertiary to present evolution of orogenic magmatism in Italy. J Virtual Explorer 36, paper 18 doi:10.3809/jvirtex.2010.00233

  • Argnani A, Savelli C (1999) Cenozoic volcanism and tectonics in the southern Tyrrhenian Sea: space-time distribution and geodynamic significance. Geodynamics 27:409–432

    Article  Google Scholar 

  • Avanzinelli R, Sapienza GT, Conticelli S (2012) The Cretaceous to Paleogene within-plate magmatism of Pachino-Capo Passero (southeastern Sicily) and Adria (La Queglia and Pietre Nere, southern Italy): geochemical and isotopic evidence against a plume-related origin of circum-Mediterranean magmas. Eur J Mineral 24:73–96

    Article  Google Scholar 

  • Bell K, Castorina F, Lavecchia G, Rosatelli G, Stoppa F (2004) Is there a mantle plume below Italy? EOS 85:541–547

    Article  Google Scholar 

  • Bell K, Lavecchia G, Rosatelli G (2013) Cenozoic Italian magmatism—isotope constraints for possible plume-related activity. J South Am Earth Sci 41:22–40

    Article  Google Scholar 

  • Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) (2010) The Geology of Italy: tectonics and life along plate margins. J Virtual Explorer 36

    Google Scholar 

  • Boari E, Avanzinelli R, Melluso L, Giordano G, Mattei M, Morra V, Conticelli S (2009) Isotope geochemistry (Sr- Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bull Volcanol 71:977–1005

    Article  Google Scholar 

  • Bruno PP, Di Fiore V, Ventura G (2000) Seismic study of the “41st Parallel” fault system offshore the Campanian-Latial continental margin, Italy. Tectonophysics 324:37–55

    Article  Google Scholar 

  • Calanchi N, Lucchi F, Pirazzoli PA, Romagnoli C, Tranne CA, Radtke U, Reyss JL, Rossi PL (2002) Late Quaternary relative sea-level changes and vertical movements at Lipari (Aeolian Islands). J Quater Sci 17:459–467

    Article  Google Scholar 

  • Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: What we know and what we imagine. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) J Virtual Explorer 36, paper 9 doi:10.3809/jvirtex.2010.00226

  • Castellarin A, Colacicchi R, Praturlon A, Cantelli C (1982) The Jurassic-Lower Pliocene history of the Ancona-Anzio line (Central Italy). Mem Soc Geol It 24:243–260

    Google Scholar 

  • Cavazza W, Wezel FC (2003) The Mediterranean region-a geological primer. Episodes 26:160–168

    Google Scholar 

  • Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (eds) (2004) The TRANSMED Atlas.  The Mediterranean region from crust to mantle (with CD-ROM). Springer, 133 pp

    Google Scholar 

  • Chiarabba C, De Gori P, Speranza F (2008) The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planet Sci Lett 268:408–423

    Article  Google Scholar 

  • Conte AM, Perinelli C, Bianchini G, Natali C, Martorelli E, Chiocci FL (2016) New insights on the petrology of submarine volcanics from the Western Pontine Archipelago (Tyrrhenian Sea, Italy). J Volcanol Geoth Res, in press

    Google Scholar 

  • Conticelli S (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chem Geol 149:51–81

    Article  Google Scholar 

  • Conticelli S, Peccerillo A (1990) Petrological significance of high-pressure ultramafic xenoliths from ultrapotassic rocks of Central Italy. Lithos 24:305–322

    Article  Google Scholar 

  • Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in Central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28:221–240

    Article  Google Scholar 

  • Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222

    Article  Google Scholar 

  • Conticelli S, Laurenzi MA, Giordano G, Mattei M, Avanzinelli R, Melluso L, Tommasini S, Boari E, Cifelli F, Perini G (2010) Leucite-bearing (kamafugitic/leucititic) and -free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: constraints on petrogenesis and geodynamics. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) J Virtual Explorer 36, paper 20 doi:10.3809/jvirtex.2010.00251

  • Conticelli S, Avanzinelli R, Ammannati E, Casalini M (2015) The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean. Lithos 232:174–196

    Article  Google Scholar 

  • D’Orazio M, Innocenti F, Tonarini S, Doglioni C (2007) Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos 98:313–334

    Article  Google Scholar 

  • De Fino M, La Volpe L, Peccerillo A, Piccarreta G, Poli G (1986) Petrogenesis of Monte Vulture volcano, Italy: inferences from mineral chemistry, major and trace element data. Contrib Mineral Petrol 92:135–145

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics classification, and constraints for petrogenetic models. Earth Sci Rev 24:81–134

    Article  Google Scholar 

  • Frezzotti ML, De Astis G, Dallai L, Ghezzo C (2007) Coexisting calc-alkaline and ultrapotassic magmatism at Monti Ernici, Mid Latina Valley (Latium, central Italy). Eur J Mineral 19:479–497

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Gechem Geophys Geosyst 14 doi:10.1029/2012GC004334

  • Gasperini D, Blichert Toft J, Bosch D, Del Moro A, Macera P, Albaréde F (2002) Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J Geophys Res 107(B12):2367. doi:10.1029/2001JB000418

    Article  Google Scholar 

  • Giacomelli L, Scandone R (2007) Vulcani d’Italia. Liguori, Naples, 475 pp

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, 358 pp

    Google Scholar 

  • Hart SR (1984) A large-scale isotopic anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hawkesworth CJ, Vollmer R (1979) Crustal contamination vs. enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib Mineral Petrol 69:151–165

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Le Maitre RW (ed) (2002) A classification of igneous rocks and glossary of terms. Cambridge University Press, Cambridge 252 pp

    Google Scholar 

  • Locardi E (1993) Dynamics of deep structures in the Tyrrhenian-Apennines area and its relation to neotectonics. Il Quaternario 6:59–66

    Google Scholar 

  • Lustrino M, Duggen S, Rosenberg CL (2011) The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting. Earth Sci Rev 104:1–40

    Article  Google Scholar 

  • Lustrino M, Fedele L, Melluso L, Morra V, Ronga F, Geldmacher J, Duggen S, Agostini S, Cucciniello C, Franciosi L, Meisel T (2013) Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (Sr-Nd-Pb-O-Hf-Os) and petrological view. Lithos 180:138–158

    Article  Google Scholar 

  • Neri G, Orecchio B, Totaro C, Falcone G, Presti D (2009) Subduction beneath southern Italy close the ending: results from seismic tomography. Seism Res Lett 80:63–70

    Article  Google Scholar 

  • Orecchio B, Presti D, Totaro C, Neri G (2014) What earthquakes say concerning residual subduction and STEP dynamics in the Calabrian Arc region, south Italy. Geophys J Int 199:1929–1942

    Article  Google Scholar 

  • Panza GF, Peccerillo A, Aoudia A, Farina B (2007) Geophysical and petrological modeling of the structure and composition of the crust and upper mantle in complex geodynamic settings: The Tyrrhenian Sea and surroundings. Earth Sci Rev 80:1–46

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: Orogenic andesites and related rocks. Wiley, Chichester, pp 525–548

    Google Scholar 

  • Peccerillo A (1992) Potassic and ultrapotassic magmatism: compositional characteristics, genesis and geologic significance. Episodes 15:243–251

    Google Scholar 

  • Peccerillo A (1999) Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318

    Article  Google Scholar 

  • Peccerillo A (2001) Geochemical similarities between Vesuvius, Phlegraean Fields and Stromboli volcanoes: petrogenetic, geodynamic and volcanological implications. Mineral Petrol 73:93–105

    Article  Google Scholar 

  • Peccerillo A (2002) Plio-Quaternary magmatism in central-southern Italy: a new classification scheme for volcanic provinces and its geodynamic implications. In: Barchi RM, Cirilli S, Minelli G (eds) Geological and geodynamic evolution of the Apennines. Boll Soc Geol It (Spec Vol 1):113–127

    Google Scholar 

  • Peccerillo A (2003) Plio-Quaternary magmatism in Italy. Episodes 26:222–226

    Google Scholar 

  • Peccerillo A (2005) Plio-Quaternary volcanism in Italy. Petrology, Geohemistry, Geodinamics. Springer, Berlin, 365 pp

    Google Scholar 

  • Peccerillo A, Frezzotti ML (2015) Magmatism, mantle evolution and geodynamics at the converging plate margins of Italy. J Geol Soc London 172:407–427

    Article  Google Scholar 

  • Peccerillo A, Martinotti G (2006) The Western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova 18:109–117

    Article  Google Scholar 

  • Peccerillo A, Panza GF (1999) Upper mantle domains beneath central-southern Italy: petrological, geochemical and geophysical constraints. Pure Appl Geophys 156:421–443

    Article  Google Scholar 

  • Peccerillo A, Poli G, Serri G (1988) Petrogenesis of orenditic and kamafugitic rocks from Central Italy. Can Mineral 26:45–65

    Google Scholar 

  • Peccerillo A, De Astis G, Faraone D, Forni F, Frezzotti ML (2013) Compositional variations of magmas in the Aeolian arc: implications for petrogenesis and geodynamics. In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) The Aeolian Islands Volcanoes. Geol Soc London Memoirs 37:491–510

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Poli G, Peccerillo A (2016) The Upper Miocene magmatism of the Elba Island: compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province. Mineral Petrol, in press

    Google Scholar 

  • Poli G, Frey FA, Ferrara G (1984) Geochemical characteristics of the south Tuscany (Italy) volcanic province, constraints on lava petrogenesis. Chem Geol 43:203–221

    Article  Google Scholar 

  • Réhault J-P, Honthaas C, Guennoc P, Bellon H, Ruffet G, Cotton J, Sosson M, Maury RC (2012) Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin: magmatic diversity and slab evolution in the western Mediterranean Sea. J Geodyn 58:73–95

    Article  Google Scholar 

  • Sahama TG (1974) Potassium-rich alkaline rocks. In: Sorensen H (ed) The alkaline rocks. Wiley, London, pp 94–109

    Google Scholar 

  • Savelli C (1988) Late Oligocene to recent episodes of magmatism in and around the Tyrrhenian Sea: implications for the processes of opening in a young inter-arc basin of intra-orogenic (Mediterranean) type. Tectonophysics 146:163–181

    Article  Google Scholar 

  • Stoppa F, Woolley AR (1997) The Italian carbonatites: field occurrence, petrology and regional significance. Mineral Petrol 59:43–67

    Article  Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc London (Spec Publ 42):313–345

    Google Scholar 

  • Tarquini S, Vinci S, Favalli M, Doumaz F, Fornaciai A, Nannipieri L (2012) Release of a 10-m-resolution DEM for the Italian territory: comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput Geosci 38:168–170

    Article  Google Scholar 

  • Turtù A, Satolli S, Maniscalco R, Calamita F, Speranza F (2013) Understanding progressive-arc- and strike-slip-related rotations in curve-shaped orogenic belts: The case of the Olevano-Antrodoco-Sibillini thrust (Northern Apennines, Italy). J Geophys Res, Solid Earth 118:1–15

    Article  Google Scholar 

  • Washington HS (1906) The Roman Comagmatic Region. Carnegie Inst Washington (Publ 57): 199 pp

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Peccerillo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Peccerillo, A. (2017). Magmatism in the Tyrrhenian Sea Region: An Introductory Overview. In: Cenozoic Volcanism in the Tyrrhenian Sea Region. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-319-42491-0_1

Download citation

Publish with us

Policies and ethics