Skip to main content

Vortices and Rotation

  • Chapter
  • First Online:
A Primer on Quantum Fluids

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1416 Accesses

Abstract

As well as being free from viscosity, the Bose–Einstein condensate has another striking property—it is constrained to circulate only through the presence of whirlpools of fixed size and quantized circulation. In contrast, in conventional fluids, the eddies can have arbitrary size and circulation. Here we establish the form of these quantum vortices, their key properties, and how they are formed and modelled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recall that in cylindrical coordinates, the curl of the vector \(\mathbf{A}=(A_r,A_{\theta },A_z)\) is

    $$\begin{aligned} \nabla \times \mathbf{A}=\left( \frac{1}{r} \frac{\partial A_z}{\partial \theta } -\frac{\partial A_{\theta }}{\partial z}, \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}, \frac{1}{r}\frac{\partial (r A_{\theta })}{\partial r} -\frac{1}{r}\frac{\partial A_r}{\partial \theta } \right) . \end{aligned}$$

    .

  2. 2.

    We have expressed the Laplacian in its cylindrically symmetric form,

    figure a
  3. 3.

    Stokes Theorem states that

    $$\begin{aligned} \oint _C \mathbf{A} \cdot \mathrm{d}{\varvec{\ell }}=\int _S (\nabla \times \mathbf{A}) \cdot \mathrm{d}{} \mathbf{S}, \end{aligned}$$

    where the surface S enclosed by the oriented curve C is simply-connected, i.e. any closed curve on S can be shrunk continuously to a point within S.

  4. 4.

    Often this cutoff is taken instead as the healing length \(\xi \).

  5. 5.

    An exception is through the technique of phase imprinting, in which the condensate phase can be directly and almost instantaneously imprinted with a desired distribution. In this manner vortices can be suddenly formed within the condensate.

References

  1. Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)

    Article  ADS  Google Scholar 

  2. T. Winiecki, Numerical Studies of Superfluids and Superconductors, Ph.D. thesis, University of Durham (2001)

    Google Scholar 

  3. E.J. Yarmchuck, M.J.V. Gordon, R.E. Packard, Phys. Rev. Lett. 43, 214 (1979)

    Article  ADS  Google Scholar 

  4. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292, 476 (2001)

    Article  ADS  Google Scholar 

  5. C. Raman, J.R. Abo-Shaeer, J.M. Vogels, K. Xu, W. Ketterle, Phys. Rev. Lett. 87, 210402 (2001)

    Article  ADS  Google Scholar 

  6. A. Recati, F. Zambelli, S. Stringari, Phys. Rev. Lett. 86, 377 (2001)

    Article  ADS  Google Scholar 

  7. S. Sinha, Y. Castin, Phys. Rev. Lett. 87, 190402 (2001)

    Article  ADS  Google Scholar 

  8. K.W. Madison, F. Chevy, V. Bretin, J. Dalibard, Phys. Rev. Lett. 86, 4443 (2001)

    Article  ADS  Google Scholar 

  9. N.G. Parker, R.M.W. van Bijnen, A.M. Martin, Phys. Rev. A 73, 061603(R) (2006)

    Article  ADS  Google Scholar 

  10. T.P. Simula, P.B. Blakie, Phys. Rev. Lett. 96, 020404 (2006)

    Article  ADS  Google Scholar 

  11. G.W. Stagg, A.J. Allen, C.F. Barenghi, N.G. Parker, J. Phys.: Conf. Ser. 594, 012044 (2015)

    ADS  Google Scholar 

  12. C.F. Barenghi, R. Hänninen, M. Tsubota, Phys. Rev. E 74, 046303 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Nozieres, D. Pines, The Theory of Quantum Liquids (Perseus Books, Cambridge, 1999)

    MATH  Google Scholar 

  14. T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis, B.P. Anderson, Phys. Rev. Lett. 104, 160401 (2010)

    Article  ADS  Google Scholar 

  15. W.J. Kwon, S.W. Seo, S. W., Y. Shin. Phys. Rev. A 92, 033613 (2015)

    Article  ADS  Google Scholar 

  16. T. Winiecki, C.S. Adams, Europhys. Lett. 52, 257 (2000)

    Article  ADS  Google Scholar 

  17. B. Jackson, J.F. McCann, C.S. Adams, Phys. Rev. A 61, 013604 (1999)

    Article  ADS  Google Scholar 

  18. D.V. Freilich, D.M. Bianchi, A.M. Kaufman, T.K. Langin, D.S. Hall, Science 329, 1182 (2010)

    Article  ADS  Google Scholar 

  19. H. Salman, Phys. Rev. Lett. 16, 165301 (2013)

    Article  ADS  Google Scholar 

  20. G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, Proc. Nat. Acad. Sci. USA 105, 13707 (2008)

    Article  ADS  Google Scholar 

  21. S. Serafini, M. Barbiero, M. Debortoli, S. Donadello, F. Larcher, F. Dalfovo, G. Lamporesi, G. Ferrari, Phys. Rev. Lett. 115, 170402 (2015)

    Article  ADS  Google Scholar 

  22. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  23. M. Tsubota, K. Kasamatsu, M. Ueda, Phys. Rev. A 65, 023603 (2002)

    Article  ADS  Google Scholar 

  24. S. Zuccher, M. Caliari, A.W. Baggaley, C.F. Barenghi, Phys. Fluids 24, 125108 (2012)

    Article  ADS  Google Scholar 

  25. G.W. Stagg, A.J. Allen, N.G. Parker, C.F. Barenghi, Phys. Rev. A 91, 013612 (2015)

    Article  ADS  Google Scholar 

  26. A.J. Groszek, T.P. Simula, D.M. Paganin, K. Helmerson, Phys. Rev. A 93, 043614 (2016)

    Google Scholar 

  27. A. Cidrim, F.E.A. dos Santos, L. Galantucci, V.S. Bagnato, C.F. Barenghi, Phys. Rev. A 93, 033651 (2016)

    Article  ADS  Google Scholar 

  28. N.G. Parker, Numerical studies of vortices and dark solitons in atomic Bose-Einstein condensates, Ph.D. thesis, University of Durham (2004)

    Google Scholar 

  29. N.G. Berloff, C.F. Barenghi, Phys. Rev. Lett. 93, 090401 (2004)

    Article  ADS  Google Scholar 

  30. A. Aftalion, I. Danaila, Phys. Rev. A 68, 023603 (2003)

    Article  ADS  Google Scholar 

  31. D. Proment, M. Onorato, C.F. Barenghi, Phys. Rev. E 85, 036306 (2012)

    Article  ADS  Google Scholar 

  32. R.P. Feynman, Applications of quantum mechanics to liquid helium, in Progress in Low Temperature Physics, vol. 1, ed. by C.J. Gorter (North-Holland, Amsterdam, 1955)

    Google Scholar 

  33. C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, Proc. Nat. Acad. Sci. USA suppl.1 111, 4647 (2014)

    Google Scholar 

  34. M.C. Tsatsos, P.E.S. Tavares, A. Cidrim, A.R. Fritsch, M.A. Caracanhas, F.E.A. dos Santos, C.F. Barenghi, V.S. Bagnato, Phys. Reports 622, 1 (2016)

    Article  ADS  Google Scholar 

  35. A.C. White, C.F. Barenghi, N.P. Proukakis, A.J. Youd, D.H. Wacks, Phys. Rev. Lett. 104, 075301 (2010)

    Article  ADS  Google Scholar 

  36. P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 100, 245301 (2008)

    Article  ADS  Google Scholar 

  37. J. Maurer, P. Tabeling, Europhys. Lett. 43, 29 (1998)

    Article  ADS  Google Scholar 

  38. C. Nore, M. Abid, M.E. Brachet, Phys. Rev. Lett. 78, 3896 (1997)

    Article  ADS  Google Scholar 

  39. T. Araki, M. Tsubota, S.K. Nemirovskii, Phys. Rev. Lett. 89, 145301 (2002)

    Article  ADS  Google Scholar 

  40. A.W. Baggaley, C.F. Barenghi, Y.A. Sergeev, Europhys. Lett. 98, 26002 (2012)

    Article  ADS  Google Scholar 

  41. A.W. Baggaley, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 85, 060501(R) (2012)

    Article  ADS  Google Scholar 

  42. A.W. Baggaley, J. Laurie, C.F. Barenghi, Phys. Rev. Lett. 109, 205304 (2012)

    Article  ADS  Google Scholar 

  43. E.A.L. Henn, J.A. Seman, G. Roati, K.M.F. Magalhaes, V.S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009)

    Article  ADS  Google Scholar 

  44. M. Kobayashi, M. Tsubota, Phys. Rev. A 76, 045603 (2007)

    Article  ADS  Google Scholar 

  45. W.J. Kwon, G. Moon, J. Choi, S.W. Seo, Y. Shin, Phys. Rev. A 90, 063627 (2014)

    Article  ADS  Google Scholar 

  46. T. Simula, M.J. Davis, K. Helmerson, Phys. Rev. Lett. 113, 165302 (2014)

    Article  ADS  Google Scholar 

  47. T.P. Billam, M.T. Reeves, B.P. Anderson, A.S. Bradley, Phys. Rev. Lett. 112, 145301 (2014)

    Article  ADS  Google Scholar 

  48. P.H. Roberts, J. Grant, J. Phys. A: Math. Gen. 4, 55 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo F. Barenghi .

Problems

Problems

5.1

Consider the bucket of Sects. 5.5 and 5.6 to now feature a harmonic potential \(V(r)=\frac{1}{2}m \omega _r^2 r^2\) perpendicular to the axis of the cylinder. Take the condensate to adopt the Thomas–Fermi profile.

  1. (a)

    Show that the energy of the vortex-free condensate is \(E_0=\pi m n_0 \omega _r^2 H_0 R_r^4 / 6\), where \(R_r\) is the radial Thomas–Fermi radius and \(n_0\) is the density along the axis.

  2. (b)

    Now estimate the kinetic energy \(E_\mathrm{kin}\) due to a vortex along the axis via Eq. (5.12). Use the fact that \(a_0 \ll R_r\) to simplify your final result.

  3. (c)

    Estimate the angular momentum of the vortex state, and hence estimate the critical rotation frequency at which the presence of a vortex becomes energetically favourable.

5.2

Use the LIA (Eq. (5.49)) to determine the angular frequency of rotation of a Kelvin wave of wave length \(\lambda =2\pi /k\) (where k is the wavenumber) on a vortex with circulation \(\kappa \).

5.3

Using the vortex point method and the complex potential, determine the translational speed of a vortex-antivortex pair (each of circulation \(\kappa \)) separated by the distance 2D.

5.4

Using the vortex point method and the complex potential, determine the period of rotation of a vortex-vortex pair (each of circulation \(\kappa \)) separated by the distance 2D.

5.5

Consider a homogeneous, isotropic, random vortex tangle (ultra-quantum turbulence) of vortex line density L, contained in a cubic box of size D. Show that the kinetic energy is approximately

$$\begin{aligned} E \approx \frac{\rho \kappa ^2 L D^3}{4 \pi } \ln \left( \frac{\ell }{a_0} \right) , \end{aligned}$$
(5.60)

where \(\rho \) is the density, \(\kappa \) the quantum of circulation, \(\ell \approx L^{-1/2}\) is the inter-vortex distance and \(a_0\) is the vortex core radius.

5.6

In an ordinary fluid of kinematic viscosity \(\nu \), the decay of the kinetic energy per unit mass, \(E'\), obeys the equation

$$\begin{aligned} \frac{dE'}{dt}=-\nu \omega ^2, \end{aligned}$$
(5.61)

where \(\omega \) is the rms vorticity. Consider ultra-quantum turbulence of vortex line density L. Define the rms superfluid vorticity as \(\omega =\kappa L\), and show that the vortex line density obeys the equation,

$$\begin{aligned} \frac{dL}{dt}= -\frac{\nu }{c} L^2, \end{aligned}$$
(5.62)

where the constant c is,

$$\begin{aligned} c=\frac{1}{4 \pi } \ln \left( \frac{\ell }{a_0}\right) , \end{aligned}$$
(5.63)

hence show that, for large times, the turbulence decays as

$$\begin{aligned} L \sim \frac{c}{\nu } t^{-1}. \end{aligned}$$
(5.64)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Barenghi, C.F., Parker, N.G. (2016). Vortices and Rotation. In: A Primer on Quantum Fluids. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-42476-7_5

Download citation

Publish with us

Policies and ethics