Skip to main content

Gamma Irradiation and Fermentation

  • Chapter
  • First Online:
Novel Food Fermentation Technologies

Part of the book series: Food Engineering Series ((FSES))

  • 2586 Accesses

Abstract

This chapter discusses the applications of gamma irradiation technology for food safety, its nutritional implications, and its involvement in fermentation processes. Gamma irradiation has become an alternative technology for food sterilization due to its nonthermal character, thus replacing the conventional heating processes. Several driving forces are propelling the need of γ-irradiation forward for food applications. Besides food preservation, γ-irradiation is taking place for novel applications, especially involving the enhancement of food fermentation processes, by directly irradiating the medium, or generating performant genetically modified strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcarde, A. R., Walder, J. M. M., & Horii, J. (2003). Fermentation of irradiated sugarcane must. Scientia Agricola, 60(4), 677–681.

    Article  CAS  Google Scholar 

  • Antonio, A. L., Carocho, M., Bento, A., Quintana, B., Luisa Botelho, M., & Ferreira, I. C. F. R. (2012). Effects of gamma radiation on the biological, physico-chemical, nutritional and antioxidant parameters of chestnuts—A review. Food and Chemical Toxicology, 50(9), 3234–3242.

    Article  CAS  Google Scholar 

  • Byun, M. W., Lee, K. H., Kim, D. H., Kim, J. H., Yook, H. S., & Ahn, H. J. (2000). Effects of gamma radiation on sensory qualities, microbiological and chemical properties of salted and fermented squid. Journal of Food Protection, 63(7), 934–939.

    CAS  Google Scholar 

  • Byun, M.-W., Son, J.-H., Yook, H.-S., Jo, C., & Kim, D.-H. (2002). Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang. Radiation Physics and Chemistry, 64(3), 245–248.

    Article  CAS  Google Scholar 

  • Cieśla, K., Salmieri, S., Lacroix, M., & Le Tien, C. (2004). Gamma irradiation influence on physical properties of milk proteins. Radiation Physics and Chemistry, 71(1–2), 95–99.

    Google Scholar 

  • Dauphin, J. F., & Saint-Lebe, L. R. (1977). Radiation chemistry of carbohydrates. In P. S. Elias & A. J. Cohen (Eds.), Radiation chemistry of major food components (pp. 131–187). Amsterdam, Netherlands: Elsevier.

    Google Scholar 

  • Delincee, H. (1983). Recent advances in radiation chemistry of proteins. In P. S. Elias & A. J. Cohen (Eds.), Recent advances in food irradiation (pp. 129–147). Amsterdam, Netherlands: Elsevier Biomedical Press.

    Google Scholar 

  • Del-Mastro, N. L., Gimenes, J. J., & Villavicencio, A. L. (1988). Influence of gamma radiation on ethanol production from yeast. Brazilian Journal of Medical and Biological Research, 21(2), 375–377.

    CAS  Google Scholar 

  • Fan, X., & Kays, S. E. (2009). Formation of trans fatty acids in ground beef and frankfurters due to irradiation. Journal of Food Science, 74(2), C79–C84.

    Article  CAS  Google Scholar 

  • Gaber, M. H. (2005). Effect of gamma-irradiation on the molecular properties of bovine serum albumin. Journal of Bioscience and Bioengineering, 100(2), 203–206.

    Article  CAS  Google Scholar 

  • Ganguly, R., & Pierce, G. N. (2012). Trans fat involvement in cardiovascular disease. Molecular Nutrition & Food Research, 56(7), 1090–1096.

    Article  CAS  Google Scholar 

  • Garrison, W. M. (1987). Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews, 87(2), 381–398.

    Article  CAS  Google Scholar 

  • Han, Y. W. (1983). Irradiation alcohol fermentation process. Patent: US4631258 A

    Google Scholar 

  • Han, Y. W., Cho, Y. K., & Ciegler, A. (1983). Effect of gamma-ray irradiation on alcohol production from corn. Biotechnology and Bioengineering, 25(11), 2631–2640.

    Article  CAS  Google Scholar 

  • Hasanain, F., Guenther, K., Mullett, W. M., & Craven, E. (2014). Gamma sterilization of pharmaceuticals--a review of the irradiation of excipients, active pharmaceutical ingredients, and final drug product formulations. PDA Journal of Pharmaceutical Science and Technology, 68(2), 113–137.

    Article  Google Scholar 

  • Iizuka, H., Shibabe, S., & Ito, H. (1969). Gamma irradiation on fermentation mashes consisting mainly of cane molasses. Agricultural and Biological Chemistry, 33(4), 473–479.

    Article  CAS  Google Scholar 

  • Jang, Y., Lim, Y., & Kim, K. (2014). Saccharomyces cerevisiae strain improvement using selection, mutation, and adaptation for the resistance to lignocellulose-derived fermentation inhibitor for ethanol production. Journal of Microbiology and Biotechnology, 24(5), 667–674.

    Article  CAS  Google Scholar 

  • Khattak, A. B., Bibi, N., Chaudry, M. A., Khan, M., Khan, M., & Qureshi, M. J. (2005). Shelf life extension of minimally processed cabbage and cucumber through gamma irradiation. Journal of Food Protection, 68(1), 105–110.

    Google Scholar 

  • Kim, J.-H., Ahn, H.-J., Kim, D.-H., Jo, C., Yook, H.-S., Park, H.-J., et al. (2003). Irradiation effects on biogenic amines in Korean fermented soybean paste during fermentation. Journal of Food Science, 68(1), 80–84.

    Article  CAS  Google Scholar 

  • Luck, H., & Kohn, R. (1963). The effect of ionizing radiation on fats. IV. Cis-trans isomerization and shifting of double bonds. Nahrung/Food, 7, 199–211.

    Article  Google Scholar 

  • Matsuzaki, H., Baba, A., Maruyama, T., Niiya, I., Yanagita, T., & Sugano, M. (1998). Study of trans fatty acid content in commercial foods in Japan. III. Meats and meat products. Journal of Japan Oil Chemists' Society, 47(3), 495–499.

    Article  CAS  Google Scholar 

  • Mehdikhani, P., Rezazadeh Bari, M., & Hovsepyan, H. (2011). Screening of Saccharomyces cerevisia for high tolerance of ethanol concentration and temperature. African Journal of Microbiology Research, 5(18), 2654–2660.

    Article  CAS  Google Scholar 

  • Molins, R. A. (2001). Food irradiation principles and applications. New York: Wiley.

    Google Scholar 

  • Nawar, W. W. (1977). Radiation chemistry of lipids. In P. S. Elias & A. J. Cohen (Eds.), Radiation chemistry of major food components (pp. 21–62). Amsterdam, Netherlands: Elsevier.

    Google Scholar 

  • Phillips, G. O., & Moody, G. J. (1959). The chemical action of gamma radiation on aqueous solutions of carbohydrates. The International Journal of Applied Radiation and Isotopes, 6, 78–85.

    Article  CAS  Google Scholar 

  • Sadecka, J. (2010). Influence of two sterilisation ways, gamma-irradiation and heat treatment, on the volatiles of black pepper (Piper nigrum L.). Czech Journal of Food Sciences, 28(1), 44–52.

    CAS  Google Scholar 

  • Simic, M. G. (Ed.). (1983). Radiation chemistry of water-soluble food components. In Preservation of food by ionizing radiation: Vol. 2 (pp. 1–73). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Song, H.-P., Kim, D.-H., Yook, H.-S., Kim, D.-H., Kwon, J.-H., & Byun, M.-W. (2004). Application of gamma irradiation for aging control and improvement of shelf-life of kimchi, Korean salted and fermented vegetables. Radiation Physics and Chemistry, 71(1–2), 57–60.

    Article  CAS  Google Scholar 

  • Stewart, E. M. (Ed.). (2001). Food irradiation chemistry. In Food irradiation: Principle and application (pp. 37–76). New York: Wiley.

    Google Scholar 

  • Verde, S. C., Trigo, M. J., Sousa, M. B., Ferreira, A., Ramos, A. C., Nunes, I., et al. (2013). Effects of gamma radiation on raspberries: Safety and quality issues. Journal of Toxicology and Environmental Health. Part A, 76(4-5), 291–303.

    Article  CAS  Google Scholar 

  • Woodside, J. V., McKinley, M. C., & Young, I. S. (2008). Saturated and trans fatty acids and coronary heart disease. Current Atherosclerosis Reports, 10(6), 460–466.

    Article  CAS  Google Scholar 

  • Xuetong, F. (2012). Radiation chemistry of food components. In X. Fan & C. H. Sommers (Eds.), Food irradiation research and technology (pp. 75–97). West Sussex: Wiley.

    Chapter  Google Scholar 

  • Yaman, A. (2001). Alternative methods of terminal sterilization for biologically active macromolecules. Current Opinion in Drug Discovery & Development, 4(6), 760–763.

    CAS  Google Scholar 

  • Yılmaz, I., & Geçgel, U. (2007). Effects of gamma irradiation on trans fatty acid composition in ground beef. Food Control, 18(6), 635–638.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Barba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koubaa, M., Barba-Orellana, S., Roselló-Soto, E., Barba, F.J. (2016). Gamma Irradiation and Fermentation. In: Ojha, K., Tiwari, B. (eds) Novel Food Fermentation Technologies. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42457-6_7

Download citation

Publish with us

Policies and ethics