Advertisement

Introduction

  • Ying Wang
  • Wen’an Zhou
  • Ping Zhang
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In recent years, with the advancement of wireless communication networks, there is an increasing demand especially on mobile Internet services. Users’ Quality of Experience (QoE) becomes one of the main issues for future wireless networks when designing personal and customized services to maintain and attract more users. Furthermore, the research on wireless resource management is moving forward from enhancing objective system performance to improving users’ subjective experience. A better QoE-oriented resource allocation policy is preferred and many new challenges are brought out accordingly, including how to quantify and measure QoE, how to design a set of unified wireless resource management strategies and how to make use of a huge amount of available data to derive an optimal QoE model, etc. Therefore, personalized QoE management, efficient estimation, and optimal resource allocation need to be studied and implemented in future wireless networks.

References

  1. 1.
    T Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017. Cisco Public Information, 2013.Google Scholar
  2. 2.
    3GPP TS23.402 v10.4.0 architecture enhancements for non-3gpp accesses (release 10). http://www.3gpp.org/DynaReport/23402.htm.
  3. 3.
    A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, et al. “Scenarios for 5G mobile and wireless communications: the vision of the METIS project”. Communications Magazine, IEEE, 52(5):26–35, 2014.Google Scholar
  4. 4.
    T. Wang, G. Li, J. Ding, Q. Miao, J. Li, and Y. Wang. “5G Spectrum: is china ready?”. Communications Magazine, IEEE, 53(7):58–65, 2015.Google Scholar
  5. 5.
  6. 6.
  7. 7.
    ITUR Rec. Bt. 500-11, methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union.Google Scholar
  8. 8.
    China mobile intellectual property center. http://www.cmipc.org.
  9. 9.
    C. Quadros, E. Cerqueira, A. Santos, and M. Gerla. “A Multi-flow-Driven Mechanism to Support Live Video Streaming on VANETs”. In Computer Networks and Distributed Systems (SBRC), 2014 Brazilian Symposium on, pages 468–476. IEEE, 2014.Google Scholar
  10. 10.
    O. Markaki, D. Charilas, and D. Nikitopoulos. “Enhancing Quality of Experience in Next Generation Networks Through Network Selection Mechanisms”. In Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on, pages 1–5. IEEE, 2007.Google Scholar
  11. 11.
    I. Paudel, J. Pokhrel, B. Wehbi, A. Cavalli, and B. Jouaber. “Estimation of video QoE from MAC parameters in wireless network: A Random Neural Network approach”. In Communications and Information Technologies (ISCIT), 2014 14th International Symposium on, pages 51–55. IEEE, 2014.Google Scholar
  12. 12.
    K. Mitra, A. Zaslavsky, and C. Ahlund. “Context-aware QoE modelling, measurement, and prediction in mobile computing systems”. Mobile Computing, IEEE Transactions on, 14(5):920–936, 2015.Google Scholar
  13. 13.
    B. Gardlo, M. Ries, M. Rupp, and R. Jarina. “A QoE evaluation methodology for HD video streaming using social networking”. In Multimedia (ISM), 2011 IEEE International Symposium on, pages 222–227. IEEE, 2011.Google Scholar
  14. 14.
    TM Forum. Gb962 customer experience management solution suite r15.5.0. Tele Management Forum.Google Scholar
  15. 15.
    Itu-t sg 12 - performance, qos and qoe. http://www.itu.int/en/ITU-T/about/groups/Pages/sg12.
  16. 16.
    P. Reichl, S. Egger, R. Schatz, and A. D’Alconzo. “The logarithmic nature of QoE and the role of the Weber-Fechner law in QoE assessment”. In Proceedings of IEEE International Conference on Communications (ICC), pages 1–5. IEEE, 2010.Google Scholar
  17. 17.
    L.I. Millett, B. Friedman, and E. Felten. “Cookies and web browser design: toward realizing informed consent online”. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 46–52. ACM, 2001.Google Scholar
  18. 18.
    M.C. Burton and J.B. Walther. “The value of web log data in use-based design and testing”. Journal of Computer-Mediated Communication, 6(3):0–0, 2001.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Institute of Network TechnologyBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations