Skip to main content

Fabrication of 3D Thermoplastic Sandwich Structures Utilizing Ultrasonic Spot Welding

  • Conference paper
  • First Online:
  • 1109 Accesses

Abstract

The ultimate goal of this work was to create 3D polycarbonate sandwich structures fabricated utilizing ultrasonic spot welding (USSW). First, a study of weld strength vs. weld time, frequency, amplitude of vibration and depth of penetration was carried out. Lap shear and peel tests were used to quantitatively characterize weld strength, and from these results, a set of parameters for USSW of polycarbonate was determined. To create the sandwich structures, three layers of 1.59 mm polycarbonate sheet were stacked together, and using an alternating pattern of USSW, the middle layer was joined to each of the outer layers. Post-weld processing of the stacked layers involving heat and pressurization of the structure with air generated a 3D open cell geometry sandwich structure of polycarbonate. 3-point bend and drop impact tests were conducted to study the stiffness and the impact properties of the sandwich structures, and the results suggest that the fabricated polycarbonate sandwich structures might be suitable for applications requiring high strength and energy absorption while maintaining low weight. Additionally, the ability to easily incorporate different geometries in the structure allows the possibility to design structures with tailored mechanical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gutnik, V.G., Gorbach, N.V., Dashkov, A.V.: Some characteristics of ultrasonic welding polymers. Fibre Chem. 34, 426–432 (2002)

    Article  Google Scholar 

  2. Rani, M.R., Prakasan, K., Rudramoorthy, R.: Study of different joints for ultrasonic welding of semicrystalline polymers. Exp. Tech. 33, 36–42 (2009)

    Article  Google Scholar 

  3. Roopa Rani, M., Prakasan, K., Rudramoorthy, R.: Designing joints for ultrasonic welding of plastics. Weld. J. 84, 50 (2005)

    Google Scholar 

  4. Liu, S.J., Chang, I.T., Hung, S.W.: Factors affecting the joint strength of ultrasonically welded polypropylene composites. Polym. Compos. 22(1), 132–141 (2001)

    Article  Google Scholar 

  5. Dukane iQ Series Ultrasonic Press System Specification Sheet, 2013

    Google Scholar 

  6. Amancip-Filho, S.T., Dos Santos, J.F.: Joining of polymers and polymer–metal hybrid structures: recent developments and trends. Polym. Eng. Sci. 49, 1461–1476 (2009)

    Article  Google Scholar 

  7. Kim, J.B., Jeong, B., Chiao, M., Lin, L.: Ultrasonic bonding for MEMS sealing and packaging. IEEE Trans. Adv. Pack. 32, 461–467 (2009)

    Article  Google Scholar 

  8. Gfeller, B., Zanetti, M., Properzi, M., Pizzi, A., Pichelin, F., Lehmann, M., Delmotte, L.: Wood bonding by vibrational welding. J. Adhes. Sci. Technol. 17, 1573–1589 (2003)

    Article  Google Scholar 

  9. Tsao, C.-W., DeVoe, D.L.: Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6, 1–16 (2008)

    Article  Google Scholar 

  10. Nonhof, C.J., Luiten, G.A.: Estimates for process conditions during the ultrasonic welding of thermoplastics. Polym. Eng. Sci. 36, 1177–1183 (1996)

    Article  Google Scholar 

  11. Singh, R., Mattoo, A., Saigal, A.: Optimizing the design and impact behavior of a polymeric enclosure. Mater. Des. 27, 955–967 (2006)

    Article  Google Scholar 

  12. Fried, J.R.: Polymer Science & Technology, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2003).

    Google Scholar 

  13. Petras, A.: Design of sandwich structures (Doctoral dissertation), Cambridge University Engineering Department, Cambridge, England (1998)

    Google Scholar 

  14. Besse, C.: Development and optimization of a formable sandwich sheet (Doctoral dissertation), Ecole Polytechnique, Palaiseau, France (2012)

    Google Scholar 

  15. Rabczuk, T., Kim, J.Y., Samaniego, E., Belytschko, T.: A homogenization method is proposed for sandwich structures. Int. J. Numer. Meth. Eng. 61, 1009–1027 (2004)

    Article  MATH  Google Scholar 

  16. Kocher, C., Watson, W., Gomez, M., Gonzalez, I., Birman, V.: Integrity of sandwich panels and beams with truss-reinforced cores. J. Aerospace Eng. 15, 111–117 (2002)

    Article  Google Scholar 

  17. Xin, F.X., Lu, T.: Effects of core topology on sound insulation performance of lightweight all-metallic sandwich panels. Mater. Manuf. Process. 26, 1213–1221 (2011)

    Article  Google Scholar 

  18. Qiao, P., Wang, J.: Mechanics of composite sinusoidal honeycomb cores. J. Aerospace Eng. 18, 42–50 (2005)

    Article  Google Scholar 

  19. Krusper, A., Isaksson, P., Gradin, P.: Modeling of out-of-plane compression loading of corrugated paper board structures. J. Eng. Mech. 133, 1171 (2007)

    Article  Google Scholar 

  20. Guo, Y., Xu, W., Fu, Y., Wang, H.: Dynamic shock cushioning characteristics and vibration transmissibility of X-PLY corrugated paperboard. Shock Vib. 18, 525–535 (2011)

    Article  Google Scholar 

  21. Giancaspro, J., Balaguru, P.N., Lyon, R.E.: Use of inorganic polymer to improve the fire response of balsa sandwich structures. J. Mater. Civil Eng. 18, 390–397 (2006)

    Article  Google Scholar 

  22. Okabe, Y., Minakuchi, S., Shiraishi, N., Murakami, K., Takeda, N.: Smart honeycomb sandwich panels with damage detection and shape recovery functions. Adv. Compos. Mater. 17, 41 (2008)

    Article  Google Scholar 

  23. Doumanidis, C., Gao, Y.: Mechanical modeling of ultrasonic welding. Weld. J. 83, 140–146 (2002)

    Google Scholar 

  24. Gao, Y., Doumanidis, C.: Mechanical analysis of ultrasonic bonding for rapid prototyping. J. Manuf. Sci. Eng. 124, 426–434 (2002)

    Article  Google Scholar 

  25. Besse, C.C., Mohr, D.: Optimization of the effective shear properties of a bidirectionally corrugated sandwich core structure. J. Appl. Mech. 80, 011012 (2012)

    Article  Google Scholar 

  26. Brauner, C., Block, T.B., Herrmann, A.S.: Meso-level manufacturing process simulation of sandwich structures to analyze viscoelastic-dependent residual stresses. J. Compos. Mater. 46, 783–799 (2011)

    Article  Google Scholar 

  27. Thomsen, O.T., Bozhevolnaya, E., Lyckegaard, A., Mortensen, F.: Characterisation and assessment of load response, failure and fatigue phenomena in sandwich structures induced by localized effects—a review. Strain 44, 85–101 (2008)

    Article  Google Scholar 

  28. Arao, Y., Koyanagi, J., Utsunomiya, S., Kawada, H.: Analysis of thermal deformation on a honeycomb sandwich CFRP mirror. Mech. Adv. Mater. Struct. 17, 328–334 (2010)

    Article  Google Scholar 

  29. Song, W., Ma, Z.: Behavior of honeycomb FRP sandwich structure under combined effects of service load and low temperatures. J. Compos. Constr. 15, 985–991 (2011)

    Article  Google Scholar 

  30. ASTM D3164. In: Standard Test Method for Strength Properties of Adhesively Bonded Plastic Lap-Shear Sandwich Joints in Shear by Tension Loading. ASTM International (2008)

    Google Scholar 

  31. ASTM D1876-08. In: Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). ASTM International (2008)

    Google Scholar 

  32. Technology, B.S.: Bayer Guide on Thermoforming Makrolon

    Google Scholar 

  33. ASTM D790-07. In: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International (2008)

    Google Scholar 

  34. LLC (BMS). Makrolon GP (Polycarbonate). Plastics International (2010)

    Google Scholar 

  35. Jang, B.P., Huang, C.T., Hsieh, C.Y., Kowbel, W., Jang, B.Z.: Repeated impact failure of continuous fiber reinforced thermoplastic and thermoset composites. J. Compos. Mater. 25, 1171–1203 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra M. Degen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc

About this paper

Cite this paper

Degen, C.M., Gurung, N. (2017). Fabrication of 3D Thermoplastic Sandwich Structures Utilizing Ultrasonic Spot Welding. In: Cloud, G., Patterson, E., Backman, D. (eds) Joining Technologies for Composites and Dissimilar Materials, Volume 10. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42426-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42426-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42425-5

  • Online ISBN: 978-3-319-42426-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics