Skip to main content

Aplysia Californica as a Novel Source of Material for Biohybrid Robots and Organic Machines

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Included in the following conference series:

Abstract

Aplysia californica is presented as a novel source of actuator and scaffold material for biohybrid robots. Collagen isolated from the Aplysia skin has been fabricated into gels and electrocompacted scaffolds. Additionally, the I2 muscle from the Aplysia buccal mass had been isolated for use as an organic actuator. This muscle has been characterized and the maximum force was found to be 58.5 mN with a maximum muscle strain of 12 ± 3 %. Finally, a flexible 3D printed biohybrid robot has been fabricated which is powered by the I2 muscle and is capable of locomotion at 0.43 cm/min under field stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., Parker, K.K.: Muscular thin films for building actuators and powering devices. Science 80(317), 1366–1370 (2007)

    Article  Google Scholar 

  2. Grosberg, A., Alford, P.W., McCain, M.L., Parker, K.K.: Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip 11(24), 4165 (2011)

    Article  Google Scholar 

  3. Vannozzi, L., Ricotti, L., Cianchetti, M., Bearzi, C., Gargioli, C., Rizzi, R., Dario, P., Menciassi, A.: Self-assembly of polydimethylsiloxane structures from 2D to 3D forbio-hybrid actuation. Bioinspir. Biomim. 10(5), 056001 (2015)

    Article  Google Scholar 

  4. Nagamine, K., Kawashima, T., Sekine, S., Ido, Y., Kanzaki, M., Nishizawa, M.: Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11(3), 513–7 (2011)

    Article  Google Scholar 

  5. Nawroth, J.C., Lee, H., Feinberg, A.W., Ripplinger, C.M., McCain, M.L., Grosberg, A., Dabiri, J.O., Parker, K.K.: A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30(8), 792–797 (2012)

    Article  Google Scholar 

  6. Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 3081 (2014)

    Google Scholar 

  7. Xi, J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mater. 4, 180–184 (2005)

    Article  Google Scholar 

  8. Chan, V., Park, K., Collens, M.B., Kong, H., Saif, T.A., Bashir, R.: Development of miniaturized walking biological machines. Sci. Rep. 2, 857 (2012)

    Article  Google Scholar 

  9. Cvetkovic, C., Raman, R., Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Taher, A., Taher A Saif, M., Bashir, R.: Three-dimensionally printed biological machines powered by skeletalmuscle. PNAS 111(28), 10125–10130 (2014)

    Article  Google Scholar 

  10. Kim, J., Park, J., Yang, S., Baek, J., Kim, B., Lee, S.H., Yoon, E.-S., Chun, K., Park, S.: Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip 7, 1504–1508 (2007)

    Article  Google Scholar 

  11. Webster, V.A., Hawley, E.L., Akkus, O., Chiel, H.J., Quinn, R.D.: Fabrication of electrocompacted aligned collagen morphs for cardiomyocyte powered living machines. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 429–440. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  12. Herr, H., Dennis, R.G.: A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehabil. 1, 6 (2004)

    Article  Google Scholar 

  13. Baryshyan, A.L., Woods, W., Trimmer, B.A., Kaplan, D.L.: Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos. PLoS One 7(2), e31598 (2012)

    Article  Google Scholar 

  14. Uesugi, K., Shimizu, K., Akiyama, Y., Hoshino, T., Iwabuchi, K., Morishima, K.: Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robot. 3(1), 13–22 (2016)

    Article  Google Scholar 

  15. Kandel, E.: Behavioral Biology of Aplysia: Contribution to the Comparative Study of Opistobranch Molluscs. W.H. Freeman and Company, San Francisco (1979)

    Google Scholar 

  16. Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in Aplysia californica. J. Neurophysiol. 75(4), 1309–26 (1996)

    Google Scholar 

  17. Mizuta, S., Miyagi, T., Yoshinaka, R.: Characterization of the quantitatively major collagen in the mantle of oyster Crassostrea gigas. Fish. Sci. 71(1), 229–235 (2005)

    Article  Google Scholar 

  18. Matsumura, T.: Shape, size and amino acid composition of collagen fibril of the starfish asterias amurensis

    Google Scholar 

  19. Cheng, X.: Umut a Gurkan, Christopher J Dehen, Michael P Tate, Hugh W Hillhouse, Garth J Simpson, and Ozan Akkus.: An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials 29(22), 3278–3288 (2008)

    Article  Google Scholar 

  20. Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81, 505–513 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0951783 and a GAANN Fellowship (Grant No. P200A150316). This study was also funded in part by grants from the National Science Foundation (Grant No. DMR-1306665), and the National Institute of Health (Grant No. R01 AR063701). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria A. Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Webster, V.A. et al. (2016). Aplysia Californica as a Novel Source of Material for Biohybrid Robots and Organic Machines. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics