Thrust-Assisted Perching and Climbing for a Bioinspired UAV
- 3 Citations
- 2.2k Downloads
Abstract
We present a multi-modal robot that flies, perches and climbs on outdoor surfaces such as concrete or stucco walls. Although the combination of flying and climbing mechanisms in a single platform extracts a weight penalty, it also provides synergies. In particular, a small amount of aerodynamic thrust can substantially improve the reliability of perching and climbing, allowing the platform to maneuver on otherwise risky surfaces. The approach is inspired by thrust-assisted perching and climbing observed in various animals including flightless birds.
Keywords
Vertical Surface Locomotory Mode Rotor Thrust Climbing Mechanism Flightless BirdNotes
Acknowledgements
Support for this work was provided by NSF IIS-1161679 and ARL MAST MCE 15-4. We gratefully acknowledge the help of H. Jiang, C. Kimes, W. Roderick and C. Kerst in conducting experiments.
References
- 1.Keennon, M.T., Grasmeyer, J.M.: Development of the black widow and microbat mavs and a vision of the future of mav design. In: AIAA International Air and Space Symposium and Exposition: The Next 100 Years, pp. 14–17 (2003)Google Scholar
- 2.Prior, S.D., Shen, S.-T., Erbil, M.A., Brazinskas, M., Mielniczek, W.: HALO the winning entry to the DARPA UAVForge challenge 2012. In: Marcus, A. (ed.) DUXU 2013, Part III. LNCS, vol. 8014, pp. 179–188. Springer, Heidelberg (2013)Google Scholar
- 3.Kovač, M., Germann, J., Hürzeler, C., Siegwart, R.Y., Floreano, D.: A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2010)Google Scholar
- 4.Lussier Desbiens, A., Asbeck, A.T., Cutkosky, M.R.: Landing, perching and taking off from vertical surfaces. Int. J. Rob. Res. 30(3), 355–370 (2011)CrossRefGoogle Scholar
- 5.Kovac, M., Germann, J.M., Hurzeler, C., Siegwart, R., Floreano, D.: A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2009)CrossRefGoogle Scholar
- 6.Anderson, M.L., Perry, C.J., Hua, B.M., Olsen, D.S., Parcus, J.R., Pederson, K.M., Jensen, D.D.: The sticky-pad plane and other innovative concepts for perching UAVs. In: 47th AIAA Aerospace Sciences Meeting (2009)Google Scholar
- 7.Daler, L., Klaptocz, A., Briod, A., Sitti, M., Floreano, D.: A perching mechanism for flying robots using a fibre-based adhesive. In: IEEE International Conference on Robotics and Automation (2013)Google Scholar
- 8.Kalantari, A., Mahajan, K., Ruffatto III., D., Spenko, M.: Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4669–4674. IEEE (2015)Google Scholar
- 9.Tsukagoshi, H., Watanabe, M., Hamada, T., Ashlih, D., Iizuka, R.: Aerial manipulator with perching and door-opening capability. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4663–4668. IEEE (2015)Google Scholar
- 10.Liu, Y., Sun, G., Chen, H.: Impedance control of a bio-inspired flying and adhesion robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3564–3569. IEEE (2014)Google Scholar
- 11.Clark, J., Goldman, D., Lin, P.C., Lynch, G., Chen, T., Komsuoglu, H., Full, R.J., Koditschek, D.E.: Design of a bio-inspired dynamical vertical climbing robot. In: Robotics: Science and Systems (2007)Google Scholar
- 12.Asbeck, A., Kim, S., Cutkosky, M.R., Provancher, W.R., Lanzetta, M.: Scaling hard vertical surfaces with compliant microspine arrays. Int. J. Rob. Res. 25, 14 (2006)CrossRefGoogle Scholar
- 13.Spenko, M.J., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Full, R.J.: Biologically inspired climbing with a hexapedal robot. J. Field Rob. 25, 223–242 (2008)CrossRefGoogle Scholar
- 14.Estrada, M., Hawkes, E.W., Christensen, D.L., Cutkosky, M.R., et al.: Perching and vertical climbing: Design of a multimodal robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4215–4221. IEEE (2014)Google Scholar
- 15.Myeong, W., Jung, K., Jung, S., Jung, Y., Myung, H.: Development of a drone-type wall-sticking and climbing robot. In: 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 386–389. IEEE (2015)Google Scholar
- 16.Dickson, J.D., Clark, J.E.: Design of a multimodal climbing and gliding robotic platform. IEEE/ASME Trans. Mechatron. 18(2), 494–505 (2013)CrossRefGoogle Scholar
- 17.Mellinger, D., Shomin, M., Kumar, V.: Control of quadrotors for robust perching and landing. In: Proceedings of the International Powered Lift Conference, pp. 119–126 (2010)Google Scholar
- 18.Thomas, J., Pope, M., Loianno, G., Hawkes, E.W., Estrada, M.A., Jiang, H., Cutkosky, M.R., Kumar, V.: Aggressive flight for perching on inclined surfaces. J. Mech. Rob. 8(5), Article ID. 051007 (2016). doi: 10.1115/1.4032250 Google Scholar
- 19.Dai, Z., Gorb, S.N., Schwarz, U.: Roughness-dependent friction force of the tarsal claw system in the beetle pachnoda marginata (coleoptera, scarabaeidae). J. Exp. Biol. 205(16), 2479–2488 (2002)Google Scholar
- 20.Gorb, S.N.: Biological attachment devices: exploring nature’s diversity for biomimetics. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 366(1870), 1557–1574 (2008)CrossRefGoogle Scholar
- 21.Yanoviak, S.P., Dudley, R., Kaspari, M.: Directed aerial descent in canopy ants. Nature 433(7026), 624–626 (2005)CrossRefGoogle Scholar
- 22.Yanoviak, S.P., Munk, Y., Kaspari, M., Dudley, R.: Aerial manoeuvrability in wingless gliding ants (cephalotes atratus). Proc. Roy. Soc. London B: Biol. Sci. 277, 2199–2204 (2010). doi: 10.1098/rspb.2010.0170 CrossRefGoogle Scholar
- 23.McCAY, M.G.: Aerodynamic stability and maneuverability of the gliding frog polypedates dennysi. J. Exp. Biol. 204(16), 2817–2826 (2001)Google Scholar
- 24.Paskins, K.E., Bowyer, A., Megill, W.M., Scheibe, J.S.: Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus. J. Exp. Biol. 210(Pt. 8), 1413–1423 (2007)CrossRefGoogle Scholar
- 25.Byrnes, G., Lim, N.T.L., Spence, A.J.: Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus). Proc. Roy. Soc. B: Biol. Sci. 275, 1007–1013 (2008)CrossRefGoogle Scholar
- 26.Fujita, M., Kawakami, K., Higuchi, H.: Hopping and climbing gait of japanese pygmy woodpeckers (picoides kizuki). Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 148(4), 802–810 (2007)CrossRefGoogle Scholar
- 27.Dial, K.P.: Wing-assisted incline running and the evolution of flight. Science 299(5605), 402–404 (2003)CrossRefGoogle Scholar
- 28.Bundle, M.W., Dial, K.P.: Mechanics of wing-assisted incline running (WAIR). J. Exp. Biol. 206, 4553–4564 (2003)CrossRefGoogle Scholar
- 29.Norberg, R.Å.: Why foraging birds in trees should climb and hop upwards rather than downwards. Ibis 123(3), 281–288 (1981)MathSciNetCrossRefGoogle Scholar
- 30.Okamura, A.M., Cutkosky, M.R.: Feature detection for haptic exploration with robotic fingers. Int. J. Rob. Res. 20(12), 925–938 (2001)CrossRefGoogle Scholar