Advertisement

Thrust-Assisted Perching and Climbing for a Bioinspired UAV

  • Morgan T. PopeEmail author
  • Mark R. Cutkosky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9793)

Abstract

We present a multi-modal robot that flies, perches and climbs on outdoor surfaces such as concrete or stucco walls. Although the combination of flying and climbing mechanisms in a single platform extracts a weight penalty, it also provides synergies. In particular, a small amount of aerodynamic thrust can substantially improve the reliability of perching and climbing, allowing the platform to maneuver on otherwise risky surfaces. The approach is inspired by thrust-assisted perching and climbing observed in various animals including flightless birds.

Keywords

Vertical Surface Locomotory Mode Rotor Thrust Climbing Mechanism Flightless Bird 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Support for this work was provided by NSF IIS-1161679 and ARL MAST MCE 15-4. We gratefully acknowledge the help of H. Jiang, C. Kimes, W. Roderick and C. Kerst in conducting experiments.

References

  1. 1.
    Keennon, M.T., Grasmeyer, J.M.: Development of the black widow and microbat mavs and a vision of the future of mav design. In: AIAA International Air and Space Symposium and Exposition: The Next 100 Years, pp. 14–17 (2003)Google Scholar
  2. 2.
    Prior, S.D., Shen, S.-T., Erbil, M.A., Brazinskas, M., Mielniczek, W.: HALO the winning entry to the DARPA UAVForge challenge 2012. In: Marcus, A. (ed.) DUXU 2013, Part III. LNCS, vol. 8014, pp. 179–188. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Kovač, M., Germann, J., Hürzeler, C., Siegwart, R.Y., Floreano, D.: A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2010)Google Scholar
  4. 4.
    Lussier Desbiens, A., Asbeck, A.T., Cutkosky, M.R.: Landing, perching and taking off from vertical surfaces. Int. J. Rob. Res. 30(3), 355–370 (2011)CrossRefGoogle Scholar
  5. 5.
    Kovac, M., Germann, J.M., Hurzeler, C., Siegwart, R., Floreano, D.: A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2009)CrossRefGoogle Scholar
  6. 6.
    Anderson, M.L., Perry, C.J., Hua, B.M., Olsen, D.S., Parcus, J.R., Pederson, K.M., Jensen, D.D.: The sticky-pad plane and other innovative concepts for perching UAVs. In: 47th AIAA Aerospace Sciences Meeting (2009)Google Scholar
  7. 7.
    Daler, L., Klaptocz, A., Briod, A., Sitti, M., Floreano, D.: A perching mechanism for flying robots using a fibre-based adhesive. In: IEEE International Conference on Robotics and Automation (2013)Google Scholar
  8. 8.
    Kalantari, A., Mahajan, K., Ruffatto III., D., Spenko, M.: Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4669–4674. IEEE (2015)Google Scholar
  9. 9.
    Tsukagoshi, H., Watanabe, M., Hamada, T., Ashlih, D., Iizuka, R.: Aerial manipulator with perching and door-opening capability. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4663–4668. IEEE (2015)Google Scholar
  10. 10.
    Liu, Y., Sun, G., Chen, H.: Impedance control of a bio-inspired flying and adhesion robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3564–3569. IEEE (2014)Google Scholar
  11. 11.
    Clark, J., Goldman, D., Lin, P.C., Lynch, G., Chen, T., Komsuoglu, H., Full, R.J., Koditschek, D.E.: Design of a bio-inspired dynamical vertical climbing robot. In: Robotics: Science and Systems (2007)Google Scholar
  12. 12.
    Asbeck, A., Kim, S., Cutkosky, M.R., Provancher, W.R., Lanzetta, M.: Scaling hard vertical surfaces with compliant microspine arrays. Int. J. Rob. Res. 25, 14 (2006)CrossRefGoogle Scholar
  13. 13.
    Spenko, M.J., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Full, R.J.: Biologically inspired climbing with a hexapedal robot. J. Field Rob. 25, 223–242 (2008)CrossRefGoogle Scholar
  14. 14.
    Estrada, M., Hawkes, E.W., Christensen, D.L., Cutkosky, M.R., et al.: Perching and vertical climbing: Design of a multimodal robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4215–4221. IEEE (2014)Google Scholar
  15. 15.
    Myeong, W., Jung, K., Jung, S., Jung, Y., Myung, H.: Development of a drone-type wall-sticking and climbing robot. In: 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 386–389. IEEE (2015)Google Scholar
  16. 16.
    Dickson, J.D., Clark, J.E.: Design of a multimodal climbing and gliding robotic platform. IEEE/ASME Trans. Mechatron. 18(2), 494–505 (2013)CrossRefGoogle Scholar
  17. 17.
    Mellinger, D., Shomin, M., Kumar, V.: Control of quadrotors for robust perching and landing. In: Proceedings of the International Powered Lift Conference, pp. 119–126 (2010)Google Scholar
  18. 18.
    Thomas, J., Pope, M., Loianno, G., Hawkes, E.W., Estrada, M.A., Jiang, H., Cutkosky, M.R., Kumar, V.: Aggressive flight for perching on inclined surfaces. J. Mech. Rob. 8(5), Article ID. 051007 (2016). doi: 10.1115/1.4032250 Google Scholar
  19. 19.
    Dai, Z., Gorb, S.N., Schwarz, U.: Roughness-dependent friction force of the tarsal claw system in the beetle pachnoda marginata (coleoptera, scarabaeidae). J. Exp. Biol. 205(16), 2479–2488 (2002)Google Scholar
  20. 20.
    Gorb, S.N.: Biological attachment devices: exploring nature’s diversity for biomimetics. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 366(1870), 1557–1574 (2008)CrossRefGoogle Scholar
  21. 21.
    Yanoviak, S.P., Dudley, R., Kaspari, M.: Directed aerial descent in canopy ants. Nature 433(7026), 624–626 (2005)CrossRefGoogle Scholar
  22. 22.
    Yanoviak, S.P., Munk, Y., Kaspari, M., Dudley, R.: Aerial manoeuvrability in wingless gliding ants (cephalotes atratus). Proc. Roy. Soc. London B: Biol. Sci. 277, 2199–2204 (2010). doi: 10.1098/rspb.2010.0170 CrossRefGoogle Scholar
  23. 23.
    McCAY, M.G.: Aerodynamic stability and maneuverability of the gliding frog polypedates dennysi. J. Exp. Biol. 204(16), 2817–2826 (2001)Google Scholar
  24. 24.
    Paskins, K.E., Bowyer, A., Megill, W.M., Scheibe, J.S.: Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus. J. Exp. Biol. 210(Pt. 8), 1413–1423 (2007)CrossRefGoogle Scholar
  25. 25.
    Byrnes, G., Lim, N.T.L., Spence, A.J.: Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus). Proc. Roy. Soc. B: Biol. Sci. 275, 1007–1013 (2008)CrossRefGoogle Scholar
  26. 26.
    Fujita, M., Kawakami, K., Higuchi, H.: Hopping and climbing gait of japanese pygmy woodpeckers (picoides kizuki). Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 148(4), 802–810 (2007)CrossRefGoogle Scholar
  27. 27.
    Dial, K.P.: Wing-assisted incline running and the evolution of flight. Science 299(5605), 402–404 (2003)CrossRefGoogle Scholar
  28. 28.
    Bundle, M.W., Dial, K.P.: Mechanics of wing-assisted incline running (WAIR). J. Exp. Biol. 206, 4553–4564 (2003)CrossRefGoogle Scholar
  29. 29.
    Norberg, R.Å.: Why foraging birds in trees should climb and hop upwards rather than downwards. Ibis 123(3), 281–288 (1981)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Okamura, A.M., Cutkosky, M.R.: Feature detection for haptic exploration with robotic fingers. Int. J. Rob. Res. 20(12), 925–938 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations