Skip to main content

Stick(y) Insects — Evaluation of Static Stability for Bio-inspired Leg Coordination in Robotics

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9793)

Abstract

As opposed to insects, todays walking robots are typically not constructed to withstand crashes. Whereas insects use a multitude of sensor information and have self-healing abilities in addition, robots usually rely on few specialized sensors that are essential for operation. If one of the sensors fails due to a crash, the robot is unusable. Therefore, most technical systems require static stability at all times to avoid damages and to guarantee utilizability, whereas insects can afford occasional failures. Despite the failure tolerance, insects also possess adhesive, “sticky” pads and claws at their feet that allow them to cling to the substrate, thus reducing the need for static stability. Nevertheless, insects, in particular stick insects, have been studied intensively to understand the underlying mechanisms of their leg coordination in order to adapt it for the control of robots. This work exemplarily evaluates the static stability of a single stick insect during walking and the stability of a technical system that is controlled by stick insect - inspired coordination rules.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42417-0_22
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-42417-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Calvitti, A., Beer, R.D.: Analysis of a distributed model of leg coordination. I. Individual coordination mechanisms. Biol. Cybern. 82(3), 197–206 (2000)

    CrossRef  MATH  Google Scholar 

  2. Cruse, H.: The function of the legs in the free walking stick insect, Carausius morosus. J. Comp. Physiol. B 112(2), 235–262 (1976)

    CrossRef  Google Scholar 

  3. Dürr, V., Ebeling, W.: The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. J. Exp. Biol. 208(12), 2237–2252 (2005)

    CrossRef  Google Scholar 

  4. Espenschied, K.S., Quinn, R.D., Beer, R.D., Chiel, H.J.: Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robot. Auton. Syst. 18(1–2), 59–64 (1996)

    CrossRef  Google Scholar 

  5. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    CrossRef  Google Scholar 

  6. Jander, J.: Mechanical stability in stick insects when walking straight and around curves. In: Gewecke, M., Wendler, G. (eds.) Insect Locomotion, pp. 33–42. Paul Parey, Berlin, Hamburg (1985)

    Google Scholar 

  7. Kindermann, T.: Positive Rückkopplung zur Kontrolle komplexer Kinematiken am Beispiel des hexapoden Laufens: Experimente und Simulationen. Ph.D. thesis, Universität Bielefeld (2003)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Moll, K., Roces, F., Federle, W.: How load-carrying ants avoid falling over: mechanical stability during foraging in Atta vollenweideri grass-cutting ants. PLoS ONE 8(1), e52816 (2013)

    CrossRef  Google Scholar 

  10. Paskarbeit, J., Schilling, M., Schmitz, J., Schneider, A.: Obstacle crossing of a real, compliant robot based on local evasion movements and averaging of stance heights using singular value decomposition. In: IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26–30 May 2015, pp. 3140–3145 (2015)

    Google Scholar 

  11. Schilling, M., Paskarbeit, J., Schmitz, J., Schneider, A., Cruse, H.: Grounding an internal body model of a hexapod walker - control of curve walking in a biological inspired robot–control of curve walking in a biological inspired robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, pp. 2762–2768 (2012)

    Google Scholar 

  12. Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107(4), 397–419 (2013)

    CrossRef  MathSciNet  Google Scholar 

  13. Schilling, M., Paskarbeit, J., Hoinville, T., Hüffmeier, A., Schneider, A., Schmitz, J., Cruse, H.: A hexapod walker using a heterarchical architecture for action selection. Front. Comput. Neurosci. 7 (2013)

    Google Scholar 

  14. Schumm, M., Cruse, H.: Control of swing movement: influences of differently shaped substrate. J. Comp. Physiol. A 192(10), 1147–1164 (2006)

    CrossRef  Google Scholar 

  15. Theunissen, L., Bekemeier, H., Dürr, V.: Stick insect locomotion (2014). toolkit.cit-ec.uni-bielefeld.de/datasets/stick-insect-locomotion-data

  16. Theunissen, L.M., et al.: A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 308–319. Springer, Heidelberg (2014)

    Google Scholar 

  17. Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Struct. Dev. 33(3), 273–286 (2004)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work has been supported by the DFG Center of Excellence ‘Cognitive Interaction TEChnology’ (CITEC, EXC 277) within the EICCI-project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Paskarbeit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Paskarbeit, J., Otto, M., Schilling, M., Schneider, A. (2016). Stick(y) Insects — Evaluation of Static Stability for Bio-inspired Leg Coordination in Robotics. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)