Advertisement

Computer-Aided Biomimetics

  • Ruben Kruiper
  • Jessica Chen-Burger
  • Marc P. Y. Desmulliez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9793)

Abstract

The interdisciplinary character of Bio-Inspired Design (BID) has resulted in a plethora of approaches and methods that propose different types of design processes. Although sustainable, creative and complex system design processes are not mutually incompatible they do focus on different aspects of design. This research defines areas of focus for the development of computational tools to support biomimetics, technical problem solving through abstraction, transfer and application of knowledge from biological models. An overview of analysed literature is provided as well as a qualitative analysis of the main themes found in BID literature. The result is a set of recommendations for further research on Computer-Aided Biomimetics (CAB).

Keywords

Bio-Inspired Design (BID) Biomimicry Biomimetics Bionics Design theory Innovation Invention Computer Aided Design (CAD) 

Notes

Acknowledgements

The authors thank Julian Vincent and Denis Cavallucci for their advice.

References

  1. 1.
    The Biomimicry Institute Toolbox. http://toolbox.biomimicry.org/. Accessed 14 Mar 2016
  2. 2.
    Vandevenne, D., Verhaegen, P.-A., Dewulf, S., Duflou, J.R.: A scalable approach for the integration of large knowledge repositories in the biologically-inspired design process. In: Proceedings 18th International Conference on Engineering Design (ICED 2011), vol. 6, Lyngby/Copenhagen, Denmark (2011)Google Scholar
  3. 3.
    Fish, F.E., Beneski, J.T.: Evolution and bio-inspired design: natural limitations. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, Chap. 12, pp. 287-312. Springer, London (2014)Google Scholar
  4. 4.
    Vincent, J.F.V.: Biomimetics in architectural design. In: Intelligent Buildings International, pp. 1–12 (2014)Google Scholar
  5. 5.
    Stone, R.B., Goel, A.K., McAdams, D.A.: Chartering a course for computer-aided bio-inspired design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, Chap. 1, pp. 1–16. Springer, London (2014)Google Scholar
  6. 6.
    The Biomimicry Institute Toolbox – Learn more. http://toolbox.biomimicry.org/core-concepts/function-and-strategy/. Accessed 14 Mar 2016
  7. 7.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design: A Systematic Approach, 3rd edn. Springer, Berlin (2007) ISBN 978-1-84628-319-2Google Scholar
  8. 8.
    Vincent, J.F.V., Bogatyreva, O.A., Bogatyreva, N.R., Bowyer, A., Pahl, A.-K.: Biomimetics: its practice and theory. J. Roy. Soc. Interface 3(9), 471–482 (2006)CrossRefGoogle Scholar
  9. 9.
    Vincent, J.F.V.: Biomimetics–a review. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 223(8), 919–939 (2009)CrossRefGoogle Scholar
  10. 10.
    Salgueiredo, C.F: Modeling biological inspiration for innovative design. In: 20th International Product Development Management Conference, Paris, France, June 2013Google Scholar
  11. 11.
    Fayemi, P.-E., Maranzana, N., Aoussat, A., Bersano, G.: Bio-inspired design characterisation and its links with problem solving tools. In: Design Conference, Dubrovnik, Croatia, May 2014Google Scholar
  12. 12.
    Nachtigall, W.: Bionik: Grundlagen und Beispiele für Naturwissenschaftler und Ingenieure. Springer, Heidelberg (2002). ISBN 978-3-642-18996-8Google Scholar
  13. 13.
    Speck, T., Speck, O.: Process sequences in biomimetic research. Des. Nat. 4, 3–11 (2008)Google Scholar
  14. 14.
    Martone, P.T., Boiler, M., Burgert, I., Dumais, J., Edwards, J., Mach, K., Rowe, N., Rueggeberg, M., Seidel, R., Speck, T.: Mechanics without muscle: biomechanical inspiration from the plant world. Integr. Comp. Biol. 50, 888–907 (2010)CrossRefGoogle Scholar
  15. 15.
    Helms, M., Vattam, S.S., Goel, A.K.: Biologically inspired design: process and products. Des. Stud. 30, 606–622 (2009)CrossRefGoogle Scholar
  16. 16.
    The Biomimicry Institute. http://toolbox.biomimicry.org/methods/integrating-biology-design/. Accessed 21 Mar 2016
  17. 17.
    Lindemann, U., Gramann, G.: Engineering design using biological principles. In: International Design Conference, Dubrovnik, Croatia, May 2004Google Scholar
  18. 18.
    Stricker, H.M.: Bionik in der Produktentwicklung unter der Berücksichtigung menschlichen Verhaltens. Ph.D. thesis, Technical University München (2006)Google Scholar
  19. 19.
    Inkermann, D., Stechert, C., Löffler, S., Victor, T.: A new bionic development approach used to improve machine elements for robotics applications. In: Proceedings of IASTED (2011)Google Scholar
  20. 20.
    Gramann, J.: Problemmodelle und Bionik als Methode. Ph.D. thesis, TU München (2004)Google Scholar
  21. 21.
    Goel, A.K., Vattam, S.S., Wiltgen, B., Helms M.: Information-processing theories of biologically inspired design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 127–152. Springer, London (2014)Google Scholar
  22. 22.
    Chakrabarti, A.: Supporting analogical transfer in biologically inspired design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 201–220. Springer, London (2014)Google Scholar
  23. 23.
    Yen, J., Helms, M., Goel, A.K., Tovey, C., Weissburg, M.: Adaptive evolution of teaching practices in biologically inspired design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 153–200. Springer, London (2014)Google Scholar
  24. 24.
    Vattam, S., Wiltgen, B., Helms, M., Goel, A.K., Yen, J.: DANE: fostering creativity in and through biologically inspired design. In: Taura, T., Nagai, Y. (eds.) International Conference on Design Creativity, Japan, pp. 115–122. Springer, London (2010)Google Scholar
  25. 25.
    Chakrabarti, A., Sarkar, P., Leelavathamma, B., Nataraju, B.S.: A functional representation for aiding biomimetic and artificial inspiration of new ideas. AIE EDAM 19, 113–132 (2005)Google Scholar
  26. 26.
    Yim, S., Wilson, J.O., Rosen, D.W.: Development of an ontology for bio-inspired design using description logics. In: International Conference on PLM (2008)Google Scholar
  27. 27.
    Wilson, J.O., Chang, P., Yim, S., Rosen, D.W.: Developing a bio-inspired design repository using ontologies. In: Proceedings of IDETC/CIE (2009)Google Scholar
  28. 28.
    Liu, X., Rosen, D.W., Yu, Z.: Ontology based knowledge modeling and reuse approach in product redesign. In: IEEE IRI, Las Vegas, Nevada, USA, August 2010Google Scholar
  29. 29.
    Shu, L.H., Cheong, H.: A natural language approach to biomimetic design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 29–62. Springer, London (2014)Google Scholar
  30. 30.
    Linsey, J.S., Viswanathan, V.K.: Overcoming cognitive challenges in bioinspired design and analogy. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 221–245. Springer, London (2014)Google Scholar
  31. 31.
    Vincent, J.F.V.: An ontology of biomimetics. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 269–286. Springer, London (2014)Google Scholar
  32. 32.
    Vincent, J.F.V., Mann, D.L.: Systematic technology transfer from biology to engineering. Philos. Trans. Roy. Soc. Lond. A 360, 159–173 (2002)CrossRefGoogle Scholar
  33. 33.
    Bogatyrev, N., Bogatyrev, O.A.: TRIZ-based algorithm for Biomimetic design. Procedia Eng. 131, 377–387 (2015)CrossRefGoogle Scholar
  34. 34.
    Fratzl, P.: Biomimetic materials research: what can we really learn from nature’s structural materials? J. Roy. Soc. Interface 4(15), 637–642 (2007)CrossRefGoogle Scholar
  35. 35.
    Stone, R.B., Wood, K.L.: Development of a functional basis for design. J. Mech. Design 122(4), 359–370 (2000)CrossRefGoogle Scholar
  36. 36.
    Deng, Y.-M.: Function and behavior representation in conceptual mechanical design. Artif. Intell. Eng. Des. Anal. Manuf. 16, 343–362 (2002)CrossRefGoogle Scholar
  37. 37.
    Nagel, J.K.S.: A thesaurus for bioinspired engineering design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 63–94. Springer, London (2014)Google Scholar
  38. 38.
    Nagel, J.K.S., Stone, R.B., McAdams, D.A.: Function-based biologically inspired design. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Biologically Inspired Design, pp. 95–126. Springer, London (2014)Google Scholar
  39. 39.
    Goel, A.K., Rugaber, S., Vattam, S.S.: Structure, Behavior and Function of Complex Systems: The SBF Modeling Language. https://home.cc.gatech.edu/dil/uploads/SBF2.pd
  40. 40.
    Goel, A.K.: Biologically inspired design: a new paradigm for AI research on computational sustainability? In: Computational Sustainability, Workshop Papers (2015)Google Scholar
  41. 41.
    Vattam, S.S., Helms, M., Goel, A.K.: Biologically inspired design: a macrocognitive account. In Proceedings of the ASME IDETC/CIE (2010)Google Scholar
  42. 42.
    Sartori, J., Pal, U., Chakrabarti, A.: A methodology for supporting “transfer” in biomimetic design. AI Eng. Des. Anal. Manuf. 24, 483–506 (2010)Google Scholar
  43. 43.
    Hatchuel, A., Weil, B.: C-K design theory: an advanced formulation. Res. Eng. Des. 19, 181–192 (2009)CrossRefGoogle Scholar
  44. 44.
    Gephi, Open Graph Viz Platform. https://gephi.org/
  45. 45.
    Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006)CrossRefGoogle Scholar
  46. 46.
    Cavallucci, D., Rousselot, F., Zanni, C.: An ontology for TRIZ. Procedia Eng. 9, 251–260 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ruben Kruiper
    • 1
  • Jessica Chen-Burger
    • 1
  • Marc P. Y. Desmulliez
    • 1
  1. 1.Heriot-Watt UniversityEdinburghScotland, UK

Personalised recommendations