Skip to main content

Regenerative Approaches in Endodontic Therapies of Immature Teeth

  • Chapter
  • First Online:

Abstract

Regenerative therapies in endodontics have recently gained momentum in clinical dentistry primarily due to the availability of effective root canal disinfection protocols, biocompatible materials with enhanced marginal seal, and discovery of mesenchymal stem cells (MSCs) in the dental pulp. These constitute the “triad” of tissue engineering required for pulp regeneration, assembled to meet the unique needs of the pulp-dentin microenvironment. Endodontic regeneration may be offered to patients at varying levels, including direct and indirect pulp capping, partial and complete pulpotomy, apexogenesis, apexification, and revascularization procedures, all of which require the triad of pulp tissue preservation or engineering. Successful outcomes in revascularization, for example, depend on root canal disinfection employing irrigation and medicaments using biocompatible calcium silicate-based cements (CSCs) paired with adhesion-based restorations that ultimately promote recruitment of MSCs from the apical papillae. These regenerative procedures yield high success rates in treatment outcome, although they are not routinely performed in the day-to-day practice of dentistry. In this chapter, we discuss the rationale for endodontic regeneration procedures in the era of markedly successful conventional therapies, and we outline the procedural aspects of available regenerative endodontic therapies.

Success is dependent on effort.

_____ Sophocles

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Winters J, Cameron AC, Widmer RP. Pulp therapy for primary and immature permanent teeth. In: Cameron AC, Widmer RP, editors. Handbook of pediatric dentistry. 3rd ed. Philadelphia: Mosby Elsevier; 2008. p. 95–113.

    Google Scholar 

  2. Camp JH. Diagnosis dilemmas in vital pulp therapy: treatment for the toothache is changing, especially in young, immature teeth. Pediatr Dent. 2008;30:197–205.

    PubMed  Google Scholar 

  3. Friedlander LT, Cullinan MP, Love RM. Dental stem cells and their potential role in apexogenesis and apexification. Int Endod J. 2009;42:955–62.

    Article  PubMed  Google Scholar 

  4. Frank AL. Therapy for the divergent pulpless tooth by continued apical formation. J Am Dent Assoc. 1966;72:87–93.

    Article  PubMed  Google Scholar 

  5. Cvek M. Prognosis of non-vital maxillary incisors treated with calcium hydroxide and filled with gutta- percha: a retrospective clinical study. Endod Dent Traumatol. 1992;8:45–55.

    Article  PubMed  Google Scholar 

  6. Qudeimat MA, Barrieshi-Nusair KM, Owais AI. Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. Eur Arch Pediatr Dent. 2007;8:99–104.

    Article  Google Scholar 

  7. Hilton TJ, Ferracane JL, Mancl L, for Northwest Practice-based Research Collaborative in Evidence-based Dentistry (NWP). Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res. 2013;92:16S–22.

    Article  PubMed  Google Scholar 

  8. Mente J, Geletneky B, Ohle M, et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod. 2010;36:806–13.

    Article  PubMed  Google Scholar 

  9. Mente J, Hufnagel S, Leo M, et al. Treatment of mineral trioxide aggregate or calcium hydroxide direct pulp capping: long-term results. J Endod. 2014;40:1746–51.

    Article  PubMed  Google Scholar 

  10. Barrieshi-Nusair KM, Qudeimat MA. A prospective clinical study of mineral trioxide aggregate for partial pulpotomy in cariously exposed permanent teeth. J Endod. 2006;32:731–5.

    Article  PubMed  Google Scholar 

  11. Witherspoon DE, Small JC, Harris GZ. Mineral trioxide aggregate pulpotomies: a case series outcomes assessment. J Am Dent Assoc. 2006;137:610–8.

    Article  PubMed  Google Scholar 

  12. Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc. 2008;139:305–15.

    Article  PubMed  Google Scholar 

  13. Nosrat A, Seifi A, Asgary S. Pulpotomy in caries-exposed immature permanent molars using calcium-enriched mixture cement or mineral trioxide aggregate: a randomized clinical trial. Int J Pediatr Dent. 2013;23:56–63.

    Article  Google Scholar 

  14. Yan M, Wu J, Yu Y, et al. Mineral trioxide aggregate promotes the odonto/osteogenic differentiation and dentinogenesis of stem cells from apical papilla via nuclear factor kappa B signaling pathway. J Endod. 2014;40:640–7.

    Article  PubMed  Google Scholar 

  15. Torabinejad M, Higa RK, McKendry DJ, et al. Dye leakage of four root end filling materials: effects of blood contamination. J Endod. 1994;20:159–63.

    Article  PubMed  Google Scholar 

  16. Torabinejad M, Smith PW, Kettering JD, et al. Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root-end filling materials. J Endod. 1995;21:295–9.

    Article  PubMed  Google Scholar 

  17. Sarkar NK, Caicedo R, Ritwik P, et al. Physiochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005;31:97–100.

    Article  PubMed  Google Scholar 

  18. Min KS, Park HJ, Lee SK, et al. Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human pulp. J Endod. 2008;34:666–70.

    Article  PubMed  Google Scholar 

  19. Paranjpe A, Smoot T, Zhang H, et al. Direct contact with mineral trioxide aggregate activates and differentiates human dental pulp cells. J Endod. 2011;37:1691–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fridland M, Rosado R. MTA solubility: a long term study. J Endod. 2005;31:376–9.

    Article  PubMed  Google Scholar 

  21. Komabayashi T, Spångberg LS. Particle size and shape analysis of MTA finer fractions using Portland cement. J Endod. 2008;34:709–11.

    Article  PubMed  Google Scholar 

  22. Yoo JS, Chang SW, Oh SR, et al. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a SEM study. Int J Oral Sci. 2014;6:227–32.

    Article  PubMed  Google Scholar 

  23. Gandolfi MG, Ciapetti G, Taddei P, et al. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dent Mater. 2010;26:974–92.

    Article  PubMed  Google Scholar 

  24. Paranjpe A, Zhang H, Johnson JD. Effects of mineral trioxide aggregate on human pulp cells after pulp-capping procedures. J Endod. 2010;36:1042–7.

    Article  PubMed  Google Scholar 

  25. Dammaschke T. The history of direct pulp capping. J Hist Dent. 2008;56:9–23.

    PubMed  Google Scholar 

  26. Do Nascimento ABL, Fontana UF, Teixeira HM, et al. Biocompatibility of a resin-modified glass-ionomer cement applied as pulp capping in human teeth. Am J Dent. 2000;13:28–34.

    PubMed  Google Scholar 

  27. Silva GA, Gava E, Lanza LD, et al. Subclinical failures of direct pulp capping of human teeth by using a dentin bonding system. J Endod. 2013;39:182–9.

    Article  PubMed  Google Scholar 

  28. Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp and apical papilla progenator cells. J Endod. 2010;36:781–9.

    Article  PubMed  Google Scholar 

  29. Ricucci D, Loghin S, Lin LM, et al. Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process? J Dent. 2014;42:1156–70.

    Article  PubMed  Google Scholar 

  30. Bjørndal L, Reit C, Bruun G, et al. Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur J Oral Sci. 2010;118:290–7.

    Article  PubMed  Google Scholar 

  31. Maltz M, Garcia R, Jardim JJ, et al. Randomized trial of partial vs. stepwise caries removal: 3-year follow-up. J Dent Res. 2012;91:1026–31.

    Article  PubMed  Google Scholar 

  32. Schwendicke F, Dörfer CE, Paris S. Incomplete caries removal: a systematic review and meta-analysis. J Dent Res. 2013;92:306–14.

    Article  PubMed  Google Scholar 

  33. Cvek M. A clinical report on partial pulpotomy and capping with calcium hydroxide in permanent incisors with complicated crown fracture. J Endod. 1978;4:232–7.

    Article  PubMed  Google Scholar 

  34. Holan G, Eidelman E, Fuks A. Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr Dent. 2005;27:129–36.

    PubMed  Google Scholar 

  35. Eghbal MJ, Asgary S, Baglue RA, et al. MTA pulpotomy of human permanent molars with irreversible pulpitis. Aust Endod J. 2009;35:4–8.

    Article  PubMed  Google Scholar 

  36. Barngkgei IH, Halboub ES, Alboni RS. Pulpotomy of symptomatic permanent teeth with carious exposure using mineral trioxide aggregate. Iran Endod J. 2013;8:65–8.

    PubMed  PubMed Central  Google Scholar 

  37. Asgary S, Eghbal MJ, Fazlyab M, et al. Five-year results of vital pulp therapy in permanent molars with irreversible pulpitis: a non-inferiority multicenter randomized clinical trial. Clin Oral Investig. 2015;19:335–41.

    Article  PubMed  Google Scholar 

  38. Bjørndal L, Demant S, Dabelsteen S. Depth and activity of carious lesions as indicators for the regenerative potential of dental pulp after intervention. J Endod. 2014;40:S76–81.

    Article  PubMed  Google Scholar 

  39. Caplan DJ, Cai J, Yin G, et al. Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent. 2005;65:90–6.

    Article  PubMed  Google Scholar 

  40. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33:377–90.

    Article  PubMed  Google Scholar 

  41. Jeeruphan T, Jantarat J, Yanpiset K, et al. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J Endod. 2012;38:1330–6.

    Article  PubMed  Google Scholar 

  42. Torabinejad M, Faras H. A clinical and histological report of a tooth with an open apex treated with regenerative endodontics using platelet-rich plasma. J Endod. 2012;38:864–8.

    Article  PubMed  Google Scholar 

  43. Martin G, Ricucci D, Gibbs JL, Lin LM. Histological findings of revascularized/revitalized immature permanent molar with apical periodontitis using platelet-rich plasma. J Endod. 2013;39:138–44.

    Article  PubMed  Google Scholar 

  44. Wang X, Thibodeau B, Trope M, Lin LM, Huang GT. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod. 2010;36:56–63.

    Article  PubMed  Google Scholar 

  45. Saoud TM, Zaazou A, Nabil A, et al. Histological observations of pulpal replacement tissue in immature dog teeth after revascularization of infected pulps. Dent Traumatol. 2015;31:243–9.

    Google Scholar 

  46. Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89:791–6.

    Article  PubMed  Google Scholar 

  47. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng. 2010;16:605–15.

    Article  Google Scholar 

  48. Iohara K, Imabayashi K, Ishizak R, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011;17:1911–20.

    Article  PubMed  Google Scholar 

  49. Hilkens P, Meschi N, Lambrechts P, Bronckaers A, Lambrichts I. Dental stem cells in pulp regeneration: near future or long road ahead? Stem Cells Dev. 2015;24:1610–22.

    Google Scholar 

  50. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogelon angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21:550–63.

    Article  PubMed  Google Scholar 

  51. Imura N, Pinheiro ET, Gomes BP, et al. The outcome of endodontic treatment: a retrospective study of 2000 cases performed by a specialist. J Endod. 2007;33:1278–82.

    Article  PubMed  Google Scholar 

  52. Hannahan JP, Eleazer PD. Comparison of success of implants versus endodontically treated teeth. J Endod. 2008;34:1302–5.

    Article  PubMed  Google Scholar 

  53. Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature – part 1. Effects of study characteristics on probability of success. Int Endod J. 2007;40:921–39.

    Article  PubMed  Google Scholar 

  54. Ng Y-L, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature – part 2. Influence of clinical factors. Int Endod J. 2008;41:6–31.

    Article  PubMed  Google Scholar 

  55. Vire DE. Failure of endodontically treated teeth: classification and evaluation. J Endod. 1991;17:338–42.

    Article  PubMed  Google Scholar 

  56. Touré B, Faye B, Kane AW, Lo CM, Niang B, Boucher Y. Analysis of reasons for extraction of endodontically treated teeth: a prospective study. J Endod. 2011;37:1512–5.

    Article  PubMed  Google Scholar 

  57. Sedgley CM, Messer HH. Are endodontically treated teeth more brittle? J Endod. 1992;18:332–5.

    Article  PubMed  Google Scholar 

  58. Randow K, Glantz PO. On cantilever loading of vital and non-vital teeth: an experimental clinical study. Acta Odontol Scand. 1986;44:271–7.

    Article  PubMed  Google Scholar 

  59. Paphangkorakit J, Osborn JW. The effect of normal occlusal forces on fluid movement through human dentine in vitro. Arch Oral Biol. 2000;45:1033–41.

    Article  PubMed  Google Scholar 

  60. Alsberg E, Hill EE, Mooney DJ. Craniofacial tissue engineering. Crit Rev Oral Biol Med. 2008;12:64–75.

    Article  Google Scholar 

  61. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root performation. J Endod. 1993;19:541–4.

    Article  PubMed  Google Scholar 

  62. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review – part II: leakage and biocompatibility investigations. J Endod. 2010;36:190–202.

    Article  PubMed  Google Scholar 

  63. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30:196–200.

    Article  PubMed  Google Scholar 

  64. Cehreli ZC, Isbitiren B, Sara S, Erbas G. Regenerative endodontic treatment (revascularization) of immature necrotic molars medicated with calcium hydroxide: a case series. J Endod. 2011;37:1327–30.

    Article  PubMed  Google Scholar 

  65. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  PubMed  Google Scholar 

  66. Chueh LH, Ho YC, Kuo TC, et al. Regenerative endodontic treatment for necrotic immature permanent teeth. J Endod. 2009;35:160–4.

    Article  PubMed  Google Scholar 

  67. Cotti E, Mereu M, Lusso D. Regenerative treatment of an immature, traumatized tooth with apical periodontitis: report of a case. J Endod. 2008;34:611–6.

    Article  PubMed  Google Scholar 

  68. Jadhav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: a pilot clinical study. J Endod. 2012;38:1581–7.

    Google Scholar 

  69. Jung IY, Lee SJ, Hargreaves KM. Biologically based treatment of immature permanent teeth with pulpal necrosis: a case series. J Endod. 2008;34:876–87.

    Article  PubMed  Google Scholar 

  70. Bose R, Nummikoski R, Hargreaves KM. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J Endod. 2009;35:1343–9.

    Article  PubMed  Google Scholar 

  71. Shah N, Logani A, Bhaskar U, Aggarwal V. Efficacy of revascularization to induce apexification/apexogenesis in infected, nonvital, immature teeth: a pilot clinical study. J Endod. 2008;34:919–25.

    Article  PubMed  Google Scholar 

  72. Shin SY, Albert JS, Mortman RE. One step pulp revascularization treatment of an immature permanent tooth with chronic apical abscess: a case report. Int Endod J. 2009;42:1118–26.

    Article  PubMed  Google Scholar 

  73. Reynolds K, Johnson JD, Cohenca N. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discolouration: a case report. Int Endod J. 2009;42:84–92.

    Article  PubMed  Google Scholar 

  74. Kim DS, Park HJ, Yeom JH, et al. Long-term follow-ups of revascularized immature necrotic teeth: three case reports. Int J Oral Sci. 2012;4:109–13.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu X, Zhang C, Huang GTJ, Cheung GS, Dissanayaka WL, Zhu W. Transplantation of dental pulp stem cells and platelet-rich plasma for pulp regeneration. J Endod. 2012;38:1604–9.

    Article  PubMed  Google Scholar 

  76. Bogen G, Chandler NP. Vital pulp therapy. In: Ingle JI, Bakland LK, Baumbartner JC, editors. Ingle’s endodontics. 6th ed. Hamilton: BC Decker Inc; 2008. p. 1310.

    Google Scholar 

  77. El-Ma’aita AM, Qualtrough AJ, Watts DC. A micro-computed tomography evaluation of mineral trioxide aggregate root canal fillings. J Endod. 2012;38:670–2.

    Article  PubMed  Google Scholar 

  78. Matt GD, Thorpe JR, Strother JM, McClanahan SB. Comparative study of white and gray mineral trioxide aggregate (MTA) simulating a one- or two-step apical barrier technique. J Endod. 2004;30:876–9.

    Article  PubMed  Google Scholar 

  79. Desai S, Chandler N. The restoration of permanent immature anterior teeth, root filled using MTA: a review. J Dent. 2009;37:652–7.

    Article  PubMed  Google Scholar 

  80. Martin DE, De Almeida JF, Henry MA. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40:51–5.

    Article  PubMed  Google Scholar 

  81. Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc. 1996;127:1491–4.

    Article  PubMed  Google Scholar 

  82. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999;25:197–205.

    Article  PubMed  Google Scholar 

  83. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo K. Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kang, M.K., Bogen, G. (2017). Regenerative Approaches in Endodontic Therapies of Immature Teeth. In: Chugal, N., Lin, L. (eds) Endodontic Prognosis. Springer, Cham. https://doi.org/10.1007/978-3-319-42412-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42412-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42410-1

  • Online ISBN: 978-3-319-42412-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics