Skip to main content

Chandler Wobble: Stochastic and Deterministic Dynamics

  • Conference paper
  • First Online:
Dynamical Systems: Theoretical and Experimental Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 182))

Abstract

We propose a model of the Earth’s torqueless precession, the “Chandler wobble,” as a self-oscillation driven by positive feedback between the wobble and the centrifugal deformation of the portion of the Earth’s mass contained in circulating fluids. The wobble may thus run like a heat engine, extracting energy from heat-powered geophysical circulations whose natural periods would otherwise by unrelated to the wobble’s observed period of about fourteen months. This can explain, more plausibly than previous models based on stochastic perturbations or forced resonance, how the wobble is maintained against viscous dissipation. The self-oscillation is a deterministic process, but stochastic variations in the magnitude and distribution of the circulations may turn off the positive feedback (a Hopf bifurcation), accounting for the occasional extinctions, followed by random phase jumps, seen in the data. This model may have implications for broader questions about the relation between stochastic and deterministic dynamics in complex systems, and the statistical analysis thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Euler, Theoria motus corporum solidorum seu rigidorum (A. F. Rose, Rostock & Greifswald, 1765)

    Google Scholar 

  2. L. D. Landau, E. M. Lifshitz, Mechanics, 3rd edn. (Elsevier, Oxford, 1976)

    MATH  Google Scholar 

  3. F. Klein, A. Sommerfeld, The Theory of the Top, vol. III (Birkhäuser, New York, 2012 [1903])

    Google Scholar 

  4. S. C. Chandler, “On the variation of latitude, I”, Astron. J. 11 (1891), 59–61

    Article  Google Scholar 

  5. S. C. Chandler, “On the variation of latitude, II”, Astron. J. 11 (1891), 65–70

    Article  Google Scholar 

  6. W. E. Carter, M. S. Carter, “Seth Carlo Chandler, Jr. 1846–1913”, in Biographical Memoirs 66 (National Academy of Sciences, Washington, D.C., 1995), 44–79

    Google Scholar 

  7. C. R. Wilson, R. O. Vicente, “Maximum likelihood estimates of polar motion parameters”, in Variations in Earth Rotation, eds. D. D. McCarthy and W. E. Carter (American Geophysical Union, Geophysical Monograph Series 59, 1990), 151–155

    Google Scholar 

  8. S. Newcomb, “On the dynamics of the Earth’s rotation, with respect to the periodic variations of latitude”, Mon. Not. R. Astron. Soc. 52 (1892), 336–341

    Article  MATH  Google Scholar 

  9. H. Jeffreys, “The variation of latitude”, Mon. Not. R. Astron. Soc. 100 (1940), 139–155

    Article  Google Scholar 

  10. H. Jeffreys, “The variation of latitude”, Mon. Not. R. Astron. Soc. 141 (1968), 255–268

    Article  Google Scholar 

  11. H.-P. Plag, “Chandler wobble and pole tide in relation to interannual atmosphere-ocean dynamics”, in Tidal Phenomena (Springer, Lecture Notes on Earth Sciences 66, 1997), 183–218

    Article  Google Scholar 

  12. R. S. Gross, “The excitation of the Chandler wobble”, Geophys. Res. Lett. 27 (2000), 2329–2332

    Article  Google Scholar 

  13. Y. Aoyama, I. Naito, “Atmospheric excitation of the Chandler wobble, 1983–1998”, J. Geophys. Res. 106 (2001), 8941–8954

    Article  Google Scholar 

  14. Y. Aoyama et al., “Atmospheric quasi-14 month fluctuation and excitation of the Chandler wobble”, Earth Planets Space 55 (2003), e25–e28

    Article  Google Scholar 

  15. A. A. Andronov, A. A. Vitt, S. È. Khaĭkin, Theory of Oscillators (Dover, Mineola, 1987 [1966])

    Google Scholar 

  16. A. Jenkins, “Self-oscillation”, Phys. Rep. 525 (2013), 167–222

    Article  MathSciNet  MATH  Google Scholar 

  17. S. H. Strogatz et al., “Theoretical mechanics: Crowd synchrony on the Millennium Bridge”, Nature 403 (2005) 43–44

    Article  Google Scholar 

  18. G. B. Airy, “On certain Conditions under which a Perpetual Motion is possible”, Trans. Cambridge Phil. Soc. 3 (1830), 369–372

    Google Scholar 

  19. R. Willis, “On the Mechanism of the Larynx”, Trans. Cambridge Phil. Soc. 4 (1833), 323–352. This work was originally presented in May 1829.

    Google Scholar 

  20. Z. Malkin, N. Miller, “Chandler wobble: two more large phase jumps revealed”, Earth Planets Space 62 (2010), 943–947

    Article  Google Scholar 

  21. K. Lambeck, The Earth’s Variable Rotation (Cambridge U. P., Cambridge 1980)

    Book  Google Scholar 

  22. F. D. Stacey, P. M. Davis, Physics of the Earth, 4th edn. (Cambridge U. P., Cambridge, 2008)

    Book  MATH  Google Scholar 

  23. A. Souriau, “The influence of earthquakes on the polar motion”, in Earth Rotation: Solved and Unsolved Problems, ed. A. Cazenave (Reidel, Dordrecht, 1986), 229–249

    Chapter  Google Scholar 

  24. B. F. Chao, R. S. Gross, “Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes”, Geophys. J. Roy. Astr. S. 91 (1987), 569–596

    Article  Google Scholar 

  25. V. Frède, P. Mazzega, “Detectability of deterministic non-linear processes in Earth rotation time-series I. Embedding”, Geophys. J. Int. 137 (1999), 551–564

    Article  Google Scholar 

  26. V. Frède, P. Mazzega, “Detectability of deterministic non-linear processes in Earth rotation time-series II. Dynamics”, Geophys. J. Int. 137 (1999), 565–579

    Article  Google Scholar 

  27. V. Frède, P. Mazzega. “A preliminary nonlinear analysis of the Earth’s Chandler wobble”, Discrete Dyn. Nat. Soc. 4 (2000), 39–53

    Article  Google Scholar 

  28. B. B. Mandelbrot, K. McCamy, “On the Secular Pole Motion and the Chandler Wobble”, Geophys. J. R. astro. Soc. 21 (1970), 217–232

    Google Scholar 

  29. D. J. Tritton, Physical Fluid Dynamics, 2nd edn. (Oxford U. P., Oxford, 1998)

    MATH  Google Scholar 

  30. H. Georgi, The Physics of Waves (Prentice Hall, Englewood Cliffs, 1993)

    Google Scholar 

  31. D. Volchenkov, T. Krüger, P. Blanchard, “Heavy-tailed Distributions In Some Stochastic Dynamical Models", Discontinuity Nonlinearity Complexity 1 (2012), 1–40

    Google Scholar 

Download references

Acknowledgments

The author thanks Eric Alfaro, Jorge Amador, and Paul O’Gorman for discussions on meteorological issues, as well as Howard Georgi and José Gracia-Bondía for encouragement and advice on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jenkins, A. (2016). Chandler Wobble: Stochastic and Deterministic Dynamics. In: Awrejcewicz, J. (eds) Dynamical Systems: Theoretical and Experimental Analysis. Springer Proceedings in Mathematics & Statistics, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-319-42408-8_15

Download citation

Publish with us

Policies and ethics