Skip to main content

Optical Switches

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

After a detailed introductory discussion of general concepts, which apply to optical switches regardless of their implementation technology, the following sections cover opto-mechanical switches and liquid crystal technologies for optical switching, including small matrix switches and wavelength selective switches. Planar lightwave circuit (PLC) based optical switch technologies constitute the topic of the next section, and the treatment includes switches in various material systems such as LiNbO3, polymer, silicon-on-insulator (SOI), and switching by means of the electro-optic- or thermo-optic effect. The following, major part of the chapter covers MEMS-based switches including 2D and 3D switches, switching matrices and wavelength selective switches as well. The chapter concludes with a brief discussion of piezo-electric actuator-based matrix switches. The description of optical switches includes their fundamentals, including underlying physics, operation principles, and generic implementations, typical characteristics of commercially available devices, and recent developments of switches that are still in the R&D stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R. Ramaswami, K. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, New York, 1998)

    Google Scholar 

  2. T.S. El-Bawab, Optical Switching (Springer, New York, 2006)

    Google Scholar 

  3. G.I. Papadimitriou, C. Papazoglou, A.S. Pomportsis, Optical Switching (Wiley-Interscience, Hoboken, 2007)

    Google Scholar 

  4. C. Li, Principles of All-Optical Switching (Wiley/Science Press, Beijing, 2015)

    Google Scholar 

  5. G.A. Fish, B. Mason, L.A. Coldren, S.P. DenBaars, Compact, \(4\times 4\) InGaAsP–InP optical crossconnect with a scaleable architecture. IEEE Photonics Technol. Lett. 10(9), 1256–1258 (1998)

    ADS  Google Scholar 

  6. Generic requirements for singlemode fiber optic switch, Telcordia Technologies Generic Requirements, GR-1073-Core (Piscataway, NJ, 2011)

    Google Scholar 

  7. T. Shimoe, K. Hajikano, K. Murakami, Path-independent insertion loss optical space switch, in Opt. Fiber Commun. Conf. (OFC’87), Reno, NV, USA (1987), Techn. Digest, paper WB2

    Google Scholar 

  8. T. Nishi, T. Yamamoto, S. Kuroyanagi, A polarization-controlled free-space photonic switch based on a PI-loss switch. IEEE Photonics Technol. Lett. 5, 1104–1106 (1993)

    ADS  Google Scholar 

  9. K. Padmanabhan, A.N. Netravali, Dilated networks for photonic switching. IEEE Trans. Commun. COM-35(12), 1357–1365 (1987)

    Google Scholar 

  10. R.A. Spanke, Architectures for large nonblocking optical space switches. IEEE J. Quantum Electron. QE-22(6), 964–967 (1986)

    ADS  Google Scholar 

  11. C. Clos, A study of non-blocking switching networks. Bell Syst. Tech. J. 32, 406–424 (1953)

    Google Scholar 

  12. M.L. Heitner, J.J. Song, R. Vianna, Folded Clos architecture switching, US patent number 6696917 (2000)

    Google Scholar 

  13. W.T. Anderson, J. Jackel, G.K. Chang, H. Dai, W. Xin, M. Goodman, C. Allyn, M. Alvarez, O. Clarke, A. Gottlieb, F. Kleytman, J. Morreale, V. Nichols, A. Tzathas, R. Vora, L. Mercer, H. Dardy, E. Renaud, L. Williard, J. Perreault, R. McFarland, T. Gibbons, The MONET project-a final report. J. Lightwave Technol. 18(12), 1988–2009 (2000)

    ADS  Google Scholar 

  14. K.S. Jepsen, U. Gliese, B.R. Hemenway, S. Yuan, K.S. Cheng, J.E. Hurley, L. Guiziou, J.W. McCamy, N. Boos, D.J. Tebben, B. Dingel, M.J. Li, S. Gray, G.E. Kohnke, L. Jiang, V. Srikant, A.F. Evans, J.M. Jouanno, Network demonstration of \(32\lambda\times 10~\mbox{Gb}/\mbox{s}\) across 6 nodes of \(640\times 640\) WSXCs with 750 km Raman-amplified fiber, in Opt. Fiber Commun. Conf. (OFC’2000), Baltimore, MD, USA (2000), Techn. Digest, paper PD35

    Google Scholar 

  15. M. Adams, ROADM and wavelength selective switches perspectives for fiber optic manufacturing test engineering, JDSU Technical White Paper (2008)

    Google Scholar 

  16. Finisar Corporation, Wavelength selective switches for ROADM applications, Finisar Corporation WSS ROADM Product Guide (2011)

    Google Scholar 

  17. P. Wall, P. Colbourne, C. Reimer, S. McLaughlin, WSS switching engine technologies, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’08), San Diego, CA, USA (2008), Techn. Digest, paper OWC1

    Google Scholar 

  18. E.G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997)

    Google Scholar 

  19. J.L. Wagener, T.A. Strasser, Multiple function digital optical switch, US Patent No. 8,086,080 (2011)

    Google Scholar 

  20. O. Solgaard, J.P. Heritage, A.R. Bhattarai, Multi-wavelength cross-connect optical switch, US Patent 6,374,008 (2002)

    Google Scholar 

  21. Calient Technologies, S-320 optical circuit switch datasheet. http://www.calient.net/products/s-series-photonic-switch/ (2013)

  22. B.C. Collings, Advanced ROADM technology and architecture, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper Tu3D.3

    Google Scholar 

  23. www.enablence.com, Enablence technologies, Inc., iMSâ„¢ \(M\times N\) Multicast switch modules (2010)

  24. P.G. Hale, R. Kompfner, Mechanical optical fibre switch. Electron. Lett. 12(15), 388 (1976)

    ADS  Google Scholar 

  25. W.J. Tomlinson, Application of GRIN-rod lenses in optical fiber communication systems. Appl. Opt. 19, 1127–1138 (1980)

    ADS  Google Scholar 

  26. SELFOC Product Guide, manufacturer’s literature on fiber collimators, NSG America Inc., NJ, USA (1997)

    Google Scholar 

  27. CASIX Inc, Technical specifications for C-lens. http://www.casix.com/products/glass-optics/telecom-optics/c-lens.shtml

  28. S. Yuan, N.A. Riza, General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses. Appl. Opt. 38, 3214–3222 (1999)

    ADS  Google Scholar 

  29. D. Marcuse, Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–719 (1977)

    ADS  Google Scholar 

  30. H. Kogelnik, Coupling and conversion coefficients for optical modes, in Proceed. Symp. Quasi-Optics, ed. by J. Fox. Polytechnic Brooklyn, Brooklyn, NY, USA. Polytechnic Institute Microwave Research Institute Symposia Series, vol. 14, pp. 335–347 (1964)

    Google Scholar 

  31. www.senko.com, Senko advanced components, fiber array and V-groove (2013)

  32. P.M. Garel-Jones, M.R. Harman, T.P. Cutts, Opto-mechanical device having optical element movable by twin flexures, US Patent No. 5594820 (1995)

    Google Scholar 

  33. H.-S. Lee, Miniaturization of gradient index lens used in optical components, US Patent No. 6088166 (2000)

    Google Scholar 

  34. www.diconfiberoptics.com

  35. W.-Z. Li, Q. Shao, Mechanical optical switching device, US Patent No. 6215919 (1999)

    Google Scholar 

  36. Y. Fujii, J. Minowa, T. Aoyama, K. Doi, Low loss \(4\times 4\) optical matrix switch for fiber-optic communications. Electron. Lett. 15(14), 427–428 (1979)

    ADS  Google Scholar 

  37. J. Minowa, Y. Fujii, Y. Nagata, T. Aoyama, K. Doi, Nonblocking \(8\times 8\) optical matrix switch for fibre-optic communications. Electron. Lett. 16(11), 422–423 (1980)

    ADS  Google Scholar 

  38. J.E. Ford, D.J. DiGiovanni, D.J. Reiley, \(1\times N\) fiber bundle scanning switch, in Opt. Fiber Commun. Conf. (OFC’98), San Jose, CA, USA (1998), Techn. Digest, pp. 143–144

    Google Scholar 

  39. J.E. Ford, D.J. DiGiovanni, \(1\times N\) fiber bundle scanning switch. IEEE Photonics Technol. Lett. 10(7), 967–969 (1998)

    ADS  Google Scholar 

  40. M. Mizukami, M. Makihara, S. Imagaki, K. Sasakura, \(200\times 200\) automated optical fiber cross-connect equipment using a fiber-handling robot for optical cabling systems, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper OFP5

    Google Scholar 

  41. K. Saito, M. Nishimura, T. Yamanishi, H. Koboyashi, T. Katagiri, M. Tachikura, Optical fiber switching device having one of a robot mechanism and an optical fiber length adjustment unit, US Patent No. 5613021 (1995)

    Google Scholar 

  42. N. Tamaru, Y. Nishida, T. Kanai, J. Yamaguchi, T. Shoji, Optical fiber cross connection apparatus and method, US Patent No. 5784515 (1998)

    Google Scholar 

  43. J. Arol, Z. Ganor, Self-aligning opto-mechanical crossbar switch, US Patent No. 6859575 (2005)

    Google Scholar 

  44. K. Goossen, Robotic optical cross-connect, US Patent No. 6307983 (2001)

    Google Scholar 

  45. S. Sjolinder, Mechanical optical fibre cross connect, in Proc. Photon. Switching, Salt Lake City, UT, USA (1995), paper PFA4

    Google Scholar 

  46. B. Pnini, Z. Ganor, R. Cohen, M. Eizenshtat, Optical crossbar switch, US Patent No. 8107779 (2007)

    Google Scholar 

  47. www.fiberzone-networks.com

  48. A.S. Kewitsch, Large scale, all-fiber optical cross-connect switches for automated patch-panels. J. Lightwave Technol. 27(15), 3107–3115 (2009)

    ADS  Google Scholar 

  49. www.telescent.com/tswitch

  50. www.emd-performance-materials.com/en/display/lc_materials/lc_phases/lc_phases.html

  51. P. Yeh, C. Gu, Optics of Liquid Crystal Displays, 2nd edn. Wiley Series in Pure and Applied Optics, vol. 1 (Wiley, Hoboken, 2010)

    Google Scholar 

  52. R.A. Soref, Low-cross-talk \(2\times 2\) optical switch. Opt. Lett. 6, 275–277 (1981)

    ADS  Google Scholar 

  53. J. Prisco, A low-crosstalk liquid crystal optical switch. J. Lightwave Technol. LT-3, 37–38 (1985)

    ADS  Google Scholar 

  54. J. Kondis, B.A. Scott, A. Ranalli, R. Lindquist, Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers, in IEEE/LEOS Internat. Conf. Opt. MEMS, Piscataway, NJ, USA (2001), Techn. Digest, pp. 292–293

    Google Scholar 

  55. Meadowlark product catalogue 2009–2010, www.meadowlark.com, pp. 45–62 (2010)

  56. An introduction to spatial light modulators. http://laser.physics.sunysb.edu/~melia/SLM_intro.html#4.7

  57. Y. Fujii, Low-crosstalk \(2\times 2\) optical switch composed of twisted nematic liquid crystal cells. IEEE Photonics Technol. Lett. 5, 715–718 (1993)

    ADS  Google Scholar 

  58. G. Lazarev, A. Hermerschmidt, S. Krüger, S. Osten, in LCOS Spatial Light Modulators: Trends and Applications, ed. by W. Osten, N. Reingand. Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH, Weinheim, 2012)

    Google Scholar 

  59. Holoeye Systems Inc, http://www.holoeyesystems.com/lcos-microdisplays/

  60. Beam steering using liquid crystals. White Paper, Boulder Nonlinear Systems (2001)

    Google Scholar 

  61. M. Johansson, S. Hard, B. Robertson, I. Manolis, T. Wilkinson, W. Crossland, Adaptive beam steering implemented in a ferroelectric liquid crystal spatial-light-modulator free-space, fiber-optic switch. Appl. Opt. 41, 4904–4911 (2002)

    ADS  Google Scholar 

  62. R.E. Wagner, J. Cheng, Electrically controlled optical switch for multimode fiber applications. Appl. Opt. 19(17), 2921–2925 (1980)

    ADS  Google Scholar 

  63. R.A. Soref, D.H. McMahon, Total switching of unpolarized fiber light with a four-port electro-optic liquid-crystal device. Opt. Lett. 5(4), 147–149 (1980)

    ADS  Google Scholar 

  64. R.A. Soref, Low-cross-talk \(2\times 2\) optical switch. Opt. Lett. 6, 275–277 (1981)

    ADS  Google Scholar 

  65. Y. Fujii, Low-crosstalk \(1\times 2\) optical switch composed of twisted nematic liquid crystal cells. IEEE Photonics Technol. Lett. 5, 206–208 (1993)

    ADS  Google Scholar 

  66. N.A. Riza, S. Yuan, Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches. J. Lightwave Technol. 17(9), 1575–1584 (1999)

    ADS  Google Scholar 

  67. N.K. Shankar, J.A. Morris, C.P. Yakymyshyn, C.R. Pollock, A \(2\times 2\) fiber optic switch using chiral liquid crystals. IEEE Photonics Technol. Lett. 2, 147–149 (1990)

    ADS  Google Scholar 

  68. S. Yuan, N.A. Riza, Low interchannel crosstalk high speed fiber optic \(N\times N\) crossconnect switch using polarization optics and ferroelectric liquid crystals, in Ann. Meeting IEEE Lasers & Electro-Optics Soc. (LEOS’98), Orlando, FL, USA (1998), Techn. Digest, vol. 2, pp. 415–416

    Google Scholar 

  69. P. Gravey, J.L. de Bougrenet de la Tocnaye, B. Fracasso, N. Wolffer, A. Tan, B. Vinouze, M. Razzak, A. Kali, Liquid crystal-based optical space switches for DWDM networks. Ann. Télécommun. 58( 9), 1378–1400 (2003)

    Google Scholar 

  70. P. Berthelé, B. Fracasso, J.L. de Bougrenet de la Tocnaye, Design and characterization of a LC SLM for a polarization-insensitive optical space-switch. Appl. Opt. 37, 5461–5468 (1998)

    ADS  Google Scholar 

  71. B. Fracasso, L. Noirie, J.L. de Bougrenet de la Tocnaye, M. Razzak, E. Daniel, Performance assessment of a liquid crystal multichannel photonic space-switch, in Proc. Photon. Switching, Monterey, CA, USA (2001), pp. 24–26, paper PThB3

    Google Scholar 

  72. N. Wolffer, B. Vinouze, R. Lever, P. Gravey, L. Bramerie, \(8\times 8\) holographic liquid crystal switch, in Proc. 26th Europ. Conf. Opt. Commun. (ECOC’2000), Munich, Germany (2000), pp. 275–276

    Google Scholar 

  73. J. Kelly, Application of liquid crystal technology to telecommunication devices, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’07), Anaheim, CA, USA (2007), Techn. Digest, paper NThE1

    Google Scholar 

  74. www.coadna.com

  75. S. Frisken, Advances in liquid crystal on silicon wavelength selective switching, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’07), Anaheim, CA, USA (2007), Techn. Digest, paper OWV4

    Google Scholar 

  76. J.R. Kelly, M. Cui, D. Heineman, H. Washbur, M. Xue, Apparatus and method for optical switching with liquid crystals and birefringent wedges. US Patent 7499608 (2009)

    Google Scholar 

  77. S.J. Frisken, G.W. Baxter, H. Zhou, D. Abakoumov, Wavelength selective reconfigurable optical cross-connect. US Patent No. 7787720 B2 (2010)

    Google Scholar 

  78. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, S. Poole, Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements, in Opt. Fiber Commun. Conf. (OFC’06), Anaheim, CA, USA (2006), Techn. Digest, paper OTuF2

    Google Scholar 

  79. www.finisar.com/roadms-wavelength-management/10wsaaxxfll

  80. www.hamamatsu.com

  81. K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, T. Takahashi, Ultrahigh port count wavelength selective switch employing waveguide-based I/O frontend, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper Tu3A.7

    Google Scholar 

  82. T. Han, J. Plumridge, S. Frisken, G. Baxter, LCOS-based matrix switching for \(2\times4\) WSS for fully flexible channel selection, in Proc. Photon. Switching, Ajaccio, France (2012), paper Th-S23-005

    Google Scholar 

  83. G.I. Papadimitriou, C. Papazoglou, A.S. Pomportsis, Optical switching: switch fabrics, techniques, and architectures. J. Lightwave Technol. 21(2), 384–405 (2003)

    ADS  Google Scholar 

  84. Y. Silberberg, P. Perlmutter, J.E. Baran, Digital optical switch. Appl. Phys. Lett. 51, 1230–1232 (1987)

    ADS  Google Scholar 

  85. P. DasMahapatra, R. Stabile, K.A. Williams, Multiple input to multiple output switching in an \(8\times4\) optical crosspoint matrix, in Proc. 40th Europ. Conf. Opt. Commun. (ECOC’14), Cannes, France (2014), paper P.4.18

    Google Scholar 

  86. M.R. Watts, W.A. Zortman, D.C. Trotter, R.W. Young, A.L. Lentine, Vertical junction silicon microdisk modulators and switches. Opt. Express 19(22), 21989–22003 (2011)

    ADS  Google Scholar 

  87. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)

    ADS  Google Scholar 

  88. A.S. Khope, A.A. Saleh, J.E. Bowers, R.C. Alferness, Elastic WDM crossbar switch for data centers, in Proc. IEEE Opt. Interconn. Conf. (OI), San Diego, CA, USA (2016), paper TuP7

    Google Scholar 

  89. G. Singh, R.P. Yadav, V. Janyani, Ti indiffused Lithium Niobate (Ti: LiNbO3) Mach-Zehnder interferometer all optical switches: a review, in New Advanced Technologies, ed. by A. Lazinica (InTech, 2010). www.intechopen.com. Chap. 2. ISBN 978-953-307-067-4

  90. N. Agrawal, C.M. Weinert, H.-J. Ehrke, G.G. Mekonnen, D. Franke, C. Bornholdt, R. Langenhorst, Fast \(2\times 2\) Mach-Zehnder optical space switches using InGaAsP–InP multi quantum-well structures. IEEE Photonics Technol. Lett. 7(6), 644–645 (1995)

    ADS  Google Scholar 

  91. D.H. Yoon, W.S. Yang, J.M. Kim, H.D. Yoon, Fabrication and properties of a \(4\times 4\) LiNbO3 optical matix switch. Mater. Trans. 43(5), 1061–1064 (2002)

    Google Scholar 

  92. E.J. Murphy, C.T. Kemmerer, D.T. Moser, M.R. Serbin, J.E. Watson, P.L. Stoddard, Uniform \(8\times 8\) lithium niobate switch arrays. J. Lightwave Technol. 13(5), 967–970 (1995)

    ADS  Google Scholar 

  93. H. Nishinoto, M. Iwasaki, S. Suzuki, M. Kondo, Polarization independent LiNbO3 \(8\times 8\) matrix switch. IEEE Photonics Technol. Lett. 2(9), 634–636 (1990)

    ADS  Google Scholar 

  94. Eospace Inc, Technical specifications of custom high-speed lithium niobate electro-optic switches. www.eospace.com

  95. A.C. O’Donnell, Polarisation independent \(1\times 16\) and \(1\times 32\) lithium niobate optical switch matrices. Electron. Lett. 27(25), 2349–2350 (1991)

    ADS  Google Scholar 

  96. H. Okayama, M. Kawahara, Ti: LiNbO3 digital optical switch matrices. Electron. Lett. 29(9), 765–766 (1993)

    ADS  Google Scholar 

  97. R. Krähenbühl, M.M. Howerton, J. Dubinger, A.S. Greenblatt, Performance and modeling of advanced Ti: LiNbO3 digital optical switches. J. Lightwave Technol. 20(1), 92–99 (2002)

    ADS  Google Scholar 

  98. M. Iodice, G. Mazzi, L. Sirleto, Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide. Opt. Express 14(12), 5266–5278 (2006)

    ADS  Google Scholar 

  99. R.A. Soref, The past, present and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006)

    ADS  Google Scholar 

  100. L.C. Kimerling, D. Ahn, A.B. Apsel, M. Beals, D. Carothers, Y.K. Chen, T. Conway, D.M. Gill, M. Grove, C.Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S.S. Patel, A.T. Pomerene, M. Rasras, D.K. Sparacin, K.Y. Tu, A.E. White, C.W. Wong, Electronic-photonic integrated circuits on the CMOS platform. Proc. SPIE 6125, 6–15 (2006)

    ADS  Google Scholar 

  101. B. Jalali, M. Paniccia, G. Reed, Silicon photonics. IEEE Microw. Mag. 7, 56–68 (2006)

    Google Scholar 

  102. Q. Huang, X. Zhang, J. Xia, J. Yu, Systematic investigation of silicon digital \(1\times 2\) electro-optic switch based on a microdisk resonator through carrier injection. Appl. Phys. B 105(2), 353–361 (2011)

    ADS  Google Scholar 

  103. L. Liu, G. Roelkens, T. Spuesens, R. Soref, P. Regreny, D. Van Thourhout, R. Baets, Low-power electro-optical switch based on a III–V microdisk cavity on a silicon-on-insulator circuit, in Optoelectronic Materials and Devices IV, Shanghai, China (2009), Proc. SPIE 7631, 7631 0P (2009)

    Google Scholar 

  104. A. Biberman, H.L.R. Lira, K. Padmaraju, N. Ophir, M. Lipson, K. Bergman, Broadband CMOS-compatible silicon photonic electro-optic switch for photonic networks-on-chip, in Conf. Lasers Electro-Opt. (CLEO/QELS 2010), San Jose, CA, USA (2010), Techn. Digest, paper CPDA11

    Google Scholar 

  105. J. van Campenhout, W.M. Green, S. Assefa, Y.A. Vlasov, Low-power, \(2\times2\) silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt. Express 17, 24020–24029 (2009)

    ADS  Google Scholar 

  106. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A.V. Krishnamoorthy, M. Asghari, High-speed and broadband electro-optic silicon switch with submilliwatt switching power, in Opt. Fiber Commun. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper OWZ4

    Google Scholar 

  107. W.M.J. Green, M. Yang, S. Assefa, J.V. Campenhout, B.G. Lee, C.V. Jahnes, F.E. Doany, C.L. Schow, J.A. Kash, Y.A. Vlasov, Silicon electro-optic \(4\times 4\) non-blocking switch array for on-chip photonic networks, in Opt. Fiber Commun. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper OThM1

    Google Scholar 

  108. J. Xing, P. Zhou, Y. Gong, Z. Li, M. Tan, Y. Yu, J. Yu, Nonblocking \(4\times 4\) silicon electro-optic switch matrix with low power consumption. IEEE Photonics Technol. Lett. 27(13), 1434–1436 (2015)

    ADS  Google Scholar 

  109. K. Okamoto, Planar lightwave circuits (PLC’s), in Photonic Networks, ed. by G. Prati (Springer, London, 1997), pp. 118–132

    Google Scholar 

  110. A. Himeno, K. Kato, T. Miya, Silica-based planar lightwave circuits. IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998)

    ADS  Google Scholar 

  111. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, Y. Ohmori, Low loss and high extinction ratio strictly nonblocking \(16\times 16\) thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology. J. Lightwave Technol. 19(3), 371–379 (2001)

    ADS  Google Scholar 

  112. T. Goh, A. Himeno, M. Okuno, H. Takahashi, K. Hattori, High-extinction ratio and low-loss silica-based \(8\times 8\) strictly nonblocking thermooptic matrix switch. J. Lightwave Technol. 17(7), 1192–1199 (1999)

    ADS  Google Scholar 

  113. T. Goh, A. Himeno, M. Okuno, H. Takahashi, K. Hattori, High extinction ratio and low loss silica-based \(8\times 8\) thermooptic matrix switch. IEEE Photonics Technol. Lett. 10, 358–360 (1998)

    ADS  Google Scholar 

  114. T. Goh, M. Yasu, K. Hattori, A. Himeno, Y. Ohmori, Low loss and high extinction ratio silica-based strictly nonblocking \(16\times 16\) thermooptic matrix switch. IEEE Photonics Technol. Lett. 10, 810–812 (1998)

    ADS  Google Scholar 

  115. T. Watanabe, T. Goh, M. Okuno, S. Sohma, T. Shibata, M. Itoh, M. Kobayashi, M. Ishii, A. Sugita, Y. Hibino, Silica-based PLC \(1\times 128\) thermo-optic switch, in Proc. 27th Europ. Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands (2001), pp. 134–135, paper Tu.L.1.2

    Google Scholar 

  116. M. Okuno, N. Takato, T. Kitoh, A. Sugita, Silica-based thermooptic switches. NTT Rev. 7, 57–63 (1995)

    Google Scholar 

  117. T. Nishi, T. Yamamoto, S. Kuroyanagi, A polarization-controlled free-space photonic switch based on a PI-LOSS switch. IEEE Photonics Technol. Lett. 5, 1104–1106 (1993)

    ADS  Google Scholar 

  118. www.ntt-electronics.com/en/products/photonics/nxn_n_o_m_s.html

  119. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, H. Takahashi, Silica-based PLC type \(32\times 32\) optical matrix switch, in Proc. 32nd Europ. Conf. Opt. Commun. (ECOC’06), Cannes, France (2006), paper OThV4

    Google Scholar 

  120. K. Watanabe, Y. Hashizume, Y. Nasu, M. Kohtoku, M. Itoh, Y. Inoue, Ultralow power consumption silica-based PLC-VOA/switches. J. Lightwave Technol. 26(14), 2235–2244 (2008)

    ADS  Google Scholar 

  121. Enablence Inc, Technical specifications, www.enablence.com

  122. L. Eldada, R. Gerhardt, J. Fujita, T. Izuhara, A. Radojevic, D. Pant, F. Wang, C. Xu, Intelligent optical cross-connect subsystem on a chip, in Opt. Fiber Commun. Conf. (OFC’05), Anaheim, CA, USA (2005), Techn. Digest, paper NTuL2. See also: Enablence technical white paper at www.enablence.com

    Google Scholar 

  123. E.L.W. Rabbering, J.F.P. van Nunen, L. Eldada, Polymeric \(16\times 16\) digital optical switch matrix, in Proc. 27th Europ. Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands (2001), paper PD.B.1.6

    Google Scholar 

  124. L. Eldada, R. Norwood, R. Blomquist, L.W. Shacklette, M.J. McFarland, Thermo-optically active polymeric photonic components, in Opt. Fiber Commun. Conf. (OFC’2000), Baltimore, MD, USA (2000), Techn. Digest, vol. 2, pp. 124–126

    Google Scholar 

  125. J. Fujita, T. Izuhara, A. Radojevic, R. Gerhard, L. Eldada, Ultrahigh index contrast planar polymeric strictly non-blocking \(1024\times 1024\) cross-connect switch matrix, in Integr. Photon. Res. (IPR), San Francisco, CA, USA (2004), Techn. Digest, paper IThC3

    Google Scholar 

  126. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, S. Itabashi, Low-loss Si wire waveguides and their application to thermooptic switches. Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006)

    ADS  Google Scholar 

  127. K. Watanabe, R. Kasahara, Y. Hashizume, Extremely-low-power-consumption thermo-optic switch with silicon-silica hybrid structure. NTT Tech. Rev. 8(2), 1–5 (2010)

    Google Scholar 

  128. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima, Ultra-compact \(32\times 32\) strictly-non-blocking Si wire optical switch with fan-out LGA interposer. Opt. Express 23(13), 17599–17606 (2015)

    ADS  Google Scholar 

  129. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima, \(32\times32\) strictly non-blocking Si-wire optical switch on ultra-small die of \(11\times25~\mbox{mm}^{2}\), in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper M2B.5

    Google Scholar 

  130. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, G. Lo, Wavelength selective switching with one-chip silicon photonic circuit including \(8\times8\) matrix switch, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper OTuM2

    Google Scholar 

  131. L. Chen, Y.K. Chen, Compact, low-loss and low-power \(8\times8\) broadband silicon optical switch. Opt. Express 20(17), 18977–18985 (2012)

    ADS  Google Scholar 

  132. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, H. Kawashima, Ultra-compact \(8\times 8\) strictly-nonblocking Si-wire PILOSS switch. Opt. Express 22(4), 3887–3894 (2014)

    ADS  Google Scholar 

  133. K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, K. Ikeda, S. Namiki, H. Kawashima, Ultra-high-extinction ratio \(2\times 2\) silicon optical switch with variable splitter. Opt. Express 23, 9086–9092 (2015)

    ADS  Google Scholar 

  134. C.R. Doerr, L.W. Stulz, D.S. Levy, M. Cappuzzo, E. Cben, L. Gomez, E. Laskowski, A. Wong-Foy, T. Murphy, Silica-waveguide \(1\times 9\) wavelength-selective cross connect, in Opt. Fiber Commun. Conf. (OFC/IOOC’02), Anaheim, CA, USA (2002), Techn. Digest, PDP FA3

    Google Scholar 

  135. T. Watanabe, K. Suzuki, T. Takahashi, Multicast switch technology that enhances ROADM operability. NTT Tech. Rev. 12(1), 1–5 (2014)

    Google Scholar 

  136. H. Takahashi, T. Watanabe, M. Okuno, Y. Hibino, T. Goh, Silica waveguide-based optical switches for photonic networks. Techn. Rep. of IEICE 103(68), 1–6 (2003), CS2003-9 (in Japanese)

    Google Scholar 

  137. T. Watanabe, K. Suzuki, T. Goh, K. Hattori, A. Mori, T. Takahashi, T. Sakamoto, K. Morita, S. Sohma, S. Kamei, Compact PLC-based transponder aggregator for colorless and directionless ROADM, in Opt. Fiber Commun. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper OTuD3

    Google Scholar 

  138. Neophotonics Inc., www.neophotonics.com/solutions/

  139. M.C. Wu, O. Solgaard, J.E. Ford, Optical MEMS for lightwave communication. J. Lightwave Technol. 24, 4433–4454 (2006)

    ADS  Google Scholar 

  140. L.Y. Lin, E.L. Goldstein, R.W. Tkach, Free-space micromachined optical switches for optical networking. IEEE J. Sel. Top. Quantum Electron. 5(1), 4–9 (1999)

    ADS  Google Scholar 

  141. S.S. Lee, L.Y. Lin, M.C. Wu, Surface-micromachined free-space fibre-optic switches. Electron. Lett. 31, 1481–1482 (1995)

    ADS  Google Scholar 

  142. R.S. Muller, K.Y. Lau, Surface-micromachined microoptical elements and systems. Proc. IEEE 86, 1705–1720 (1998)

    Google Scholar 

  143. W. Piyawattanametha, P.R. Patterson, D. Hah, H. Toshiyoshi, M.C. Wu, Surface- and bulk-micromachined two-dimensional scanner driven by angular vertical comb actuators. J. Microelectromech. Syst. 14, 1329–1338 (2005)

    Google Scholar 

  144. P.D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, S. Patra, Digital MEMS for optical switching. IEEE Commun. Mag. 40(3), 88–95 (2002)

    Google Scholar 

  145. H. Toshiyoshi, H. Fujita, Electrostatic micro torsion mirrors for an optical switch matrix. J. Microelectromech. Syst. 5, 231–237 (1996)

    Google Scholar 

  146. R.A. Miller, Y.C. Tai, G. Xu, J. Bartha, F. Lin, An electromagnetic MEMS \(2\times 2\) fiber optic bypass switch, in Proc. Int. Conf. Solid-State Sensors and Actuators, Chicago, IL, USA (1997), paper 1A4

    Google Scholar 

  147. C. Marxer, N.F. de Rooij, Micro-opto-mechanical \(2\times2\) switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation. J. Lightwave Technol. 17(1), 2–6 (1999)

    ADS  Google Scholar 

  148. R.T. Chen, H. Nguyen, M.C. Wu, A high-speed low-voltage stress induced micromachined \(2\times 2\) optical switch. IEEE Photonics Technol. Lett. 11, 1396–1398 (1999)

    ADS  Google Scholar 

  149. W. Noell, P.A. Clerc, F. Duport, C. Marxer, N. de Rooij, Novel process-insensitive latchable \(2\times 2\) optical cross connector for single and multimode optical MEMS fiber switches, in IEEE/LEOS Internat. Conf. Opt. MEMS, Piscataway, NJ, USA (2003), Techn. Digest, pp. 49–50

    Google Scholar 

  150. L.Y. Lin, E.L. Goldstein, R.W. Tkach, Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects. IEEE Photonics Technol. Lett. 10, 525–527 (1998)

    ADS  Google Scholar 

  151. B. Behin, K.Y. Lau, R.S. Muller, Magnetically actuated micromirrors for fiber-optic switching, in Solid-State Sensor and Actuator Workshop Cleveland, OH, USA (1998), Techn. Digest, pp. 273–276

    Google Scholar 

  152. R.L. Wood, R. Mahadevan, E. Hill, MEMS 2D matrix switch, in Opt. Fiber Commun. Conf. (OFC/IOOC’02), Anaheim, CA, USA (2002), Techn. Digest, vol. 1, pp. 91–92

    Google Scholar 

  153. L. Fan, S. Gloeckner, P.D. Dobblelaere, S. Patra, D. Reiley, C. King, T. Yeh, J. Gritters, S. Gutierrez, Y. Loke, M. Harburn, R. Chen, E. Kruglick, M. Wu, A. Husain, Digital MEMS switch for planar photonic crossconnects, in Opt. Fiber Commun. Conf. (OFC/IOOC’02), Anaheim, CA, USA (2002), Techn. Digest, vol. 1, pp. 93–94

    Google Scholar 

  154. P.M. Dobbelaere, S. Gloeckner, S.K. Patra, L. Fan, C. King, K. Falta, Design, manufacture and reliability of 2-D MEMS optical switches. Proc. SPIE 4945, 39–45 (2003)

    ADS  Google Scholar 

  155. J.-N. Kuo, G.-B. Lee, W.-F. Pan, A high-speed low-voltage double switch optical crossconnect using stress-induced bending micromirrors. IEEE Photonics Technol. Lett. 16(9), 2042–2044 (2004)

    ADS  Google Scholar 

  156. L.-Y. Lin, E.L. Goldstein, R.W. Tkach, On the expandability of free-space micromachined optical cross connects. J. Lightwave Technol. 18, 482–489 (2000)

    ADS  Google Scholar 

  157. M.C. Wu, P.R. Patterson, Free-space optical MEMS, in MEMS: A Practical Guide to Design, Analysis, and Applications, ed. by J.G. Korvink, O. Paul, (William Andrew, Norwich, 2005), pp. 345–402

    Google Scholar 

  158. S. Han, T.J. Seok, N. Quack, B.-W. Yoo, M.C. Wu, Monolithic \(50\times 50\) MEMS silicon photonic switches with microsecond response time, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper M2K.2

    Google Scholar 

  159. T.J. Seok, N. Quack, S. Han, M.C. Wu, \(50\times 50\) digital silicon photonic switches with MEMS-actuated adiabatic couplers, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper M2B.4

    Google Scholar 

  160. M.C. Wu, S. Han, T.J. Seok, N. Quack, Large-port-count MEMS silicon photonics switches, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper M2B.3

    Google Scholar 

  161. R. Helkey, S. Adams, J. Bowers, T. Davis, O. Jerphagnon, V. Kaman, A. Keating, B. Liu, C. Pusarla, Y. Xu, S. Yuan, X. Zheng, Design of large scale, MEMS based photonic switches. Opt. Photonics News 13, 40–43 (2002)

    Google Scholar 

  162. D.J. Bishop, C.R. Giles, G.P. Austin, The lucent LambdaRouter: MEMS technology of the future here today. IEEE Commun. Mag. 40(3), 75–79 (2002)

    Google Scholar 

  163. V.A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H.B. Chan, M.E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D.T. Neilson, J. Kim, C.R. Giles, D. Bishop, Beam-steering micromirrors for large optical crossconnects. J. Lightwave Technol. 21, 634–642 (2003)

    ADS  Google Scholar 

  164. D.T. Neilson, V.A. Aksyuk, S. Arney, N.R. Basavanhally, K.S. Bhalla, D.J. Bishop, B.A. Boie, C.A. Bolle, J.V. Gates, A.M. Gottlieb, J.P. Hickey, N.A. Jackman, P.R. Kolodner, S.K. Korotky, B. Mikkelsen, F. Pardo, G. Raybon, R. Ruel, R.E. Scotti, T.W. Van Blarcum, L. Zhang, C.R. Giles, Fully provisioned \(112\times 112\) micro-mechanical optical cross connect with 35.8 Tb/s demonstrated capacity, in Opt. Fiber Commun. Conf. (OFC’2000), Baltimore, MD, USA (2000), Techn. Digest, vol. 4, pp. 202–204

    Google Scholar 

  165. A. Fernandez, B.P. Staker, W.E. Owens, L.P. Muray, J.P. Spallas, W.C. Banyai, Modular MEMS design and fabrication for an \(80\times 80\) transparent optical cross-connect switch. Proc. SPIE 5604, 208–217 (2004)

    ADS  Google Scholar 

  166. Z.J. Yao, N.C. MacDonald, Single crystal silicon supported thin film micromirrors for optical applications. Opt. Eng. 36(5), 1408–1413 (1997)

    ADS  Google Scholar 

  167. R.A. Conant, J.T. Nee, K.Y. Lau, R.S. Muller, A flat high frequency scanning micromirror, in Solid-State Sensor and Actuator Workshop, Cleveland, OH, USA (2000), Techn. Digest, pp. 6–9

    Google Scholar 

  168. J.-L.A. Yeh, J. Hongrui, N.C. Tien, Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator. J. Microelectromech. Syst. 8(4), 456–465 (1999)

    Google Scholar 

  169. D.S. Greywall, C.-S. Pai, S.-H. Oh, C.-P. Chang, D.M. Marom, P.A. Busch, R.A. Cirelli, J.A. Taylor, F.P. Klemens, T.W. Sorsch, J.E. Bowers, W.-C. Lai, H.T. Soh, Monolithic fringe field-activated crystalline silicon tilting-mirror devices. J. Microelectromech. Syst. 12(5), 702–707 (2003)

    Google Scholar 

  170. D.S. Greywall, P.A. Busch, F. Pardo, D.W. Carr, G. Bogart, H.T. Soh, Crystalline silicon tilting mirrors for optical cross-connect switches. J. Microelectromech. Syst. 12, 708–712 (2003)

    Google Scholar 

  171. O. Tsuboi, Y. Mizuno, N. Kouma, H. Soneda, H. Okuda, S. Ueda, I. Sawaki, F. Yamagishi, Y. Nakamura, A 2-axis comb-driven micromirror array for 3-D MEMS optical switch. Trans. Inst. Electron. Eng. Jpn. 123-E, 398–402 (2003)

    Google Scholar 

  172. J. Kim, D. Christensen, L. Lin, Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives. IEEE Photonics Technol. Lett. 17(11), 2307–2309 (2005)

    ADS  Google Scholar 

  173. D. Hah, H.S.-Y. Huang, J.-C. Tsai, J.-C. Toshiyoshi, M.C. Wu, Low-voltage, large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators. J. Microelectromech. Syst. 13, 279–289 (2004)

    Google Scholar 

  174. N. Kouma, O. Tsuboi, Y. Mizuno, H. Okuda, X. Mi, M. Iwaki, H. Soneda, S. Ueda, I. Sawaki, A multi-step DRIE process for a \(128\times128\) micromirror array, in IEEE/LEOS Internat. Conf. Opt. MEMS, Piscataway, NJ, USA (2003), Techn. Digest, pp. 53–54

    Google Scholar 

  175. X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R.C. Anderson, H.N. Poulsen, B. Liu, J.R. Schemit, C. Pusarla, R. Helkey, D.J. Blumenthal, J.E. Bowers, Three-dimensional MEMS photonic cross-connect switch design and performance. IEEE J. Sel. Top. Quantum Electron. 9, 571–578 (2003)

    ADS  Google Scholar 

  176. J.E. Bowers, Low power 3D MEMS optical switches, in IEEE/LEOS Internat. Conf. Opt. MEMS Nanophoton. (OPT MEMS), Clearwater, FL, USA (2009), Techn. Digest, paper ThB1

    Google Scholar 

  177. S. Yuan, C. Lee, Scaling optical switches to 100 Tb/s capacity, in Integr. Photon. Res., Silicon Nanophoton. Photonics in Switching, Monterey, CA, USA (2010), OSA Techn. Digest, paper PWB3

    Google Scholar 

  178. www.glimmerglass.com

  179. L. Erdmann, D. Efferenn, Technique for monolithic fabrication of silicon microlenses with selectable rim angles. Opt. Eng. 36(4), 1094–1098 (1997)

    ADS  Google Scholar 

  180. J. Kim, A.R. Paparian, R.E. Frahm, J.V. Gates, Performance of large scale MEMS-based optical crossconnect switches, in 15th Ann. Meeting IEEE Lasers & Electro-Optics Soc. (IEEE/LEOS), Glasgow, Scotland, UK (2002), Techn. Digest, vol. 2, pp. 411–412

    Google Scholar 

  181. R. Ryf, J. Kim, J.P. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H.R. Shea, A. Gasparyan, V. Muratov, J.E. Griffith, J.A. Prybyla, S. Goyal, C.D. White, M.T. Lin, R. Ruel, C. Nijander, S. Arney, D.T. Neilson, D.J. Bishop, P. Kolodner, S. Pau, C.J. Nuzman, A. Weis, B. Kumar, D. Lieuwen, V. Aksyuk, D.S. Greywall, T.C. Lee, H.T. Soh, W.M. Mansfield, S. Jin, W.Y. Lai, H.A. Huggins, D.L. Barr, R.A. Cirelli, G.R. Bogart, K. Teffeau, R. Vella, H. Mavoori, A. Ramirez, N.A. Ciampa, F.P. Klemens, M.D. Morris, T. Boone, J.Q. Liu, J.M. Rosamilia, C.R. Giles, 1296-port MEMS transparent optical crossconnect with 2.07 petabit/s switch capacity, in Opt. Fiber Commun. Conf. (OFC’01), Anaheim, CA, USA (2001), Techn. Digest, paper PD28-1-3

    Google Scholar 

  182. M. Kozhevnikov, N.R. Basavanhally, J.D. Weld, Y.L. Low, P.R. Kolodner, C.A. Bolle, R. Ryf, A.R. Papazian, A. Olkhovets, J. Kim, D.T. Neilson, V.A. Aksyuk, J.V. Gates, Compact \(64\times 64\) micromechanical optical cross-connect. IEEE Photonics Technol. Lett. 15(7), 993–995 (2003)

    ADS  Google Scholar 

  183. A. Olkhovets, P. Phanaphat, C. Nuzman, D.J. Shin, C. Lichtenwalner, M. Kozhevnikov, J. Kim, Performance of an optical switch based on 3-D MEMS crossconnect. IEEE Photonics Technol. Lett. 16(3), 780–782 (2004)

    ADS  Google Scholar 

  184. V.A. Aksyuk, S. Arney, N.R. Basavanhally, D.J. Bishop, C.A. Bolle, C.C. Chang, R. Frahm, A. Gasparyan, J.V. Gates, R. George, C.R. Giles, J. Kim, P.R. Kolodner, T.M. Lee, D.T. Neilson, C. Nijander, C.J. Nuzman, M. Paczkowski, A.R. Papazian, F. Pardo, D.A. Ramsey, R. Ryf, R.E. Scotti, H. Shea, M.E. Simon, \(238\times238\) micromechanical optical cross connect. IEEE Photonics Technol. Lett. 15, 587–589 (2003)

    ADS  Google Scholar 

  185. D.T. Neilson, R. Frahm, P. Kolodner, C.A. Bolle, R. Ryf, J. Kim, A.R. Papazian, C.J. Nuzman, A. Gasparyan, N.R. Basavanhally, V.A. Aksyuk, J.V. Gates, \(256\times256\) port optical crossconnect subsystem. J. Lightwave Technol. 22, 1499–1509 (2004)

    ADS  Google Scholar 

  186. J. Kim, C.J. Nuzman, B. Kumar, D.F. Lieuwen, J.S. Kraus, A. Weiss, C.P. Lichtenwalner, A.R. Papazian, R.E. Frahm, N.R. Basavanhally, D.A. Ramsey, V.A. Aksyuk, F. Pardo, M.E. Simon, V. Lifton, H.B. Chan, M. Haueis, A. Gasparyan, H.R. Shea, S. Arney, C.A. Bolle, P.R. Kolodner, R. Ryf, D.T. Neilson, J.V. Gates, \(1100\times 1100\) port MEMS-based optical crossconnect with 4-dB maximum loss. IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003)

    ADS  Google Scholar 

  187. M. Kozhevnikov, R. Ryf, D.T. Neilson, P. Kolodner, C.A. Bolle, A.R. Papazian, J. Kim, J.V. Gates, Micromechanical optical crossconnect with 4-F relay imaging optics. IEEE Photonics Technol. Lett. 16(1), 275–277 (2004)

    ADS  Google Scholar 

  188. Y. Mizuno, O. Tsuboi, N. Kouma, H. Soneda, H. Okuda, Y. Nakamura, S. Ueda, I. Sawaki, F. Yamagishi, A 2-axis comb-driven micromirror array for 3D MEMS switches, in IEEE/LEOS Internat. Conf. Opt. MEMS, Lugano, Switzerland (2002), Techn. Digest, pp. 17–18

    Google Scholar 

  189. M. Yano, F. Yamagishi, T. Tsuda, Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks. IEEE J. Sel. Top. Quantum Electron. 11(2), 383–394 (2005)

    ADS  Google Scholar 

  190. R. Sawada, J. Yamaguchi, E. Higurashi, A. Shimizu, T. Yamamoto, N. Takeuchi, Y. Uenishi, Single Si crystal 1024-ch MEMS mirror based on terraced electrodes and a high-aspect ratio torsion spring for 3-D cross-connect switch, in Ann. Meeting IEEE Lasers & Electro-Optics Soc. (LEOS), Piscataway, NJ, USA (2003), Digest Int. Conf. Opt. MEMS, pp. 11–12

    Google Scholar 

  191. T. Yamamoto, J. Yamaguchi, N. Takeuchi, A. Shimizu, E. Higurashi, R. Sawada, Y. Uenishi, A three-dimensional MEMS optical switching module having 100 input and 100 output ports. IEEE Photonics Technol. Lett. 15, 1360–1362 (2003)

    ADS  Google Scholar 

  192. J. Yamaguchi, T. Sakata, N. Shimoyama, H. Ishii, F. Simokawa, T. Yamamoto, High-yield fabrication methods for MEMS tilt mirror array for optical switch. NTT Tech. Rev. 5(10), 1–6 (2007)

    Google Scholar 

  193. M. Mizukami, J. Yamaguchi, N. Nemoto, Y. Kawajiri, H. Hirata, S. Uchiyama, M. Makihara, T. Sakata, N. Shimoyama, H. Ishii, F. Shimokawa, \(128\times 128\) 3D-MEMS optical switch module with simultaneous optical paths connection for optical cross-connect systems, in Proc. Photon. Switching, Pisa, Italy (2009), pp. 247–248

    Google Scholar 

  194. Y. Kawajiri, N. Nemoto, K. Hadama, Y. Ishii, M. Makihara, J. Yamaguchi, T. Yamamoto, \(512\times 512\) port 3D MEMS optical switch module with toroidal concave mirror. NTT Tech. Rev. 10(11), 1–6 (2012)

    Google Scholar 

  195. E. Korevaar, Y. Taketomi, T. Barrott, H. Tigli, M. Last, L. Dirvscio, E. Davis, Optical switch module. US Patent No. 7,734,127 (2007)

    Google Scholar 

  196. J.I. Dadap, P.B. Chu, I. Brener, C. Pu, C.D. Lee, K. Bergman, N. Bonadeo, T. Chau, M. Chou, R. Doran, R. Gibson, R. Harel, J.J. Johnson, S.S. Lee, S. Park, D.R. Peale, R. Rodriguez, D. Tong, M. Tsai, C. Wu, W. Zhong, E.L. Goldstein, L.Y. Lin, J.A. Walker, Modular MEMS-based optical cross-connect with large port-count optical switch. IEEE Photonics Technol. Lett. 15, 1773–1775 (2003)

    ADS  Google Scholar 

  197. P.M. Hagelin, U. Krishnamoorthy, J.P. Heritage, O. Solgaard, Scalable optical cross-connect switch using micromachined mirrors. IEEE Photonics Technol. Lett. 12, 882–884 (2000)

    ADS  Google Scholar 

  198. R.R.A. Syms, Scaling laws for MEMS mirror-rotation optical cross connect switches. J. Lightwave Technol. 20, 1084–1094 (2002)

    ADS  Google Scholar 

  199. W.M. Mellette, J.E. Ford, Scaling limits of MEMS beam-steering switches for data center networks. J. Lightwave Technol. 33(15), 3308–3318 (2015)

    ADS  Google Scholar 

  200. J.E. Ford, J.A. Walker, Dynamic spectral power equalization using micro-opto-mechanics. IEEE Photonics Technol. Lett. 10, 1440–1442 (1998)

    ADS  Google Scholar 

  201. H. Venghaus, A. Gladisch, B.F. Joergensen, J.-M. Jouanno, M. Kristensen, R.J. Pedersen, F. Testa, D. Trommer, J.P. Weber, Optical add/drop multiplexers for WDM communication systems, in Opt. Fiber Commun. Conf. (OFC’97), Dallas, TX, USA (1997), Techn. Digest, vol. 4, pp. 280–281

    Google Scholar 

  202. J.E. Ford, V.A. Aksyuk, D.J. Bishop, J.A. Walker, Wavelength add-drop switching using tilting micromirrors. J. Lightwave Technol. 17(5), 904–911 (1999)

    ADS  Google Scholar 

  203. R. Ryf, Y. Su, L. Möller, S. Chandrasekhar, X. Liu, D.T. Neilson, C.R. Giles, Wavelength blocking filter with flexible data rates and channel spacing. J. Lightwave Technol. 23, 54–60 (2005)

    ADS  Google Scholar 

  204. D.T. Neilson, H. Tang, D.S. Greywall, N.R. Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O. Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, R. Ryf, Channel equalization and blocking filter utilizing micro electro mechanical mirrors. IEEE J. Sel. Top. Quantum Electron. 10, 563–569 (2004)

    ADS  Google Scholar 

  205. N.A. Riza, M.J. Mughal, Broadband optical equalizer using fault-tolerant digital micromirrors. Opt. Express 11, 1559–1565 (2003)

    ADS  Google Scholar 

  206. D.M. Marom, D.T. Neilson, D.S. Greywall, C.-S. Pai, N.R. Basavanhally, V.A. Aksyuk, D.O. López, F. Pardo, M.E. Simon, Y. Low, P. Kolodner, C.A. Bolle, Wavelength-selective \(1\times K\) switches using free-space optics and MEMS micromirrors: theory, design, and implementation. J. Lightwave Technol. 23, 1620–1629 (2005)

    ADS  Google Scholar 

  207. D.M. Marom, D.T. Neilson, D.S. Greywall, N.R. Basavanhally, P.R. Kolodner, Y.L. Low, C.A. Bolle, S. Chandrasekhar, L. Buhl, S.-H. Oh, C.-S. Pai, K. Werder, H.T. Soh, G.R. Bogart, E. Ferry, F.P. Klemens, K. Teffeau, J.F. Miner, S. Rogers, J.E. Bowers, R.C. Keller, W. Mansfield, Wavelength selective \(1\times 4\) switch for 128 WDM channels at 50 GHz spacing, in Opt. Fiber Commun. (OFC/IOOC’02), Anaheim, CA, USA (2002), Techn. Digest, pp. 857–859

    Google Scholar 

  208. J. Tsai, S.T.-Y. Huang, D. Hah, M.C. Wu, \(1 \times N^{2}\) wavelength selective switch with two cross-scanning one-axis analog micromirror arrays in a 4-f optical system. J. Lightwave Technol. 24(2), 897–903 (2006)

    ADS  Google Scholar 

  209. J. Tsai, S. Huang, D. Hah, H. Toshiyoshi, M.C. Wu, Open-loop operation of MEMS-based \(1\times N\) wavelength-selective switch with long-term stability and repeatability. IEEE Photonics Technol. Lett. 16, 1041–1043 (2004)

    ADS  Google Scholar 

  210. J. Tsai, M.C. Wu, A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis MEMS scanner array. IEEE Photonics Technol. Lett. 18(13), 1439–1441 (2006)

    ADS  Google Scholar 

  211. J.-C. Tsai, L. Fan, C.-H. Chi, D. Hah, M.C. Wu, A large port-count \(1 \times 32\) wavelength-selective switch using a large scan-angle, high fill factor, two-axis analog micromirror array, in Proc. 30th Europ. Conf. Opt. Commun. (ECOC’04), Stockholm, Sweden (2004), vol. 2, pp. 152–153

    Google Scholar 

  212. www.lumentum.com/en/products/1x9-100-ghz-wss-mini

  213. Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, F. Shimokawa, MEMS-based \(1\times 43\) wavelength-selective switch with flat passband, in Proc. 35th Europ. Conf. Opt. Commun. (ECOC’09), Vienna, Austria (2009), PDP, session 1

    Google Scholar 

  214. W.P. Taylor, J.D. Brazzle, A.B. Osenar, C.J. Corcoran, I.H. Jafri, D. Keating, G. Kirkos, M. Lockwood, A. Pareek, J.J. Bernstein, A high fill factor linear mirror array for a wavelength selective switch. J. Micromech. Microeng. 14, 147–152 (2004)

    ADS  Google Scholar 

  215. D.T. Fuchs, C.R. Doerr, V.A. Aksyuk, M.E. Simon, L.W. Stulz, S. Chandrasekhar, L.L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, R. Pafchek, A hybrid MEMS-waveguide wavelength selective cross connect. IEEE Photonics Technol. Lett. 16, 99–101 (2004)

    ADS  Google Scholar 

  216. R. Ryf, P. Bernasconi, P. Kolodner, J. Kim, J.P. Hickey, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H.R. Shea, A. Gasparyan, V. Muratov, J.E. Griffith, J.A. Prybyla, S. Goyal, C.D. White, M.T. Lin, R. Ruel, C. Nijander, S. Arney, D.T. Neilson, D.J. Bishop, S. Pau, C. Nuzman, A. Weis, B. Kumar, D. Lieuwen, V. Aksyuk, D.S. Greywall, T.C. Lee, H.T. Soh, W.M. Mansfield, S. Jin, W.Y. Lai, H.A. Huggins, D.L. Barr, R.A. Cirelli, G.R. Bogart, K. Teffeau, R. Vella, H. Mavoori, A. Ramirez, N.A. Ciampa, F.P. Klemens, M.D. Morris, T. Boone, J.Q. Liu, J.M. Rosamilia, C.R. Giles, Scalable wavelength-selective crossconnect switch based on MEMS and planar waveguides, in Proc. 27th Europ. Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands (2001), vol. 6, PDP, pp. 76–77

    Google Scholar 

  217. S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, J. Bowers, Fully integrated \(N\times N\) MEMS wavelength selective switch with 100% colorless add-drop ports, in Opt. Fiber Commun. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’08), San Diego, CA, USA (2008), Techn. Digest, paper OWC2

    Google Scholar 

  218. K. Sorimoto, H. Uetsuka, M. Tachikura, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, N.A. Idris, H. Tsuda, Compact \(5\times 5\) wavelength-selective cross connect using integrated 2-D MEMS mirror arrays, in 18th Microopt. Conf. (MOC’13), Tokyo, Japan (2013), Techn. Digest, pp. 55–57

    Google Scholar 

  219. C.-H. Chi, J.-C. Tsai, D. Hah, S. Mathai, M.-C.M. Lee, M.C. Wu, Silicon-based monolithic \(4\times4\) wavelength-selective cross connect with on-chip micromirrors, in Opt. Fiber Commun. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’06), San Francisco, CA, USA (2014), Techn. Digest, paper OTuF

    Google Scholar 

  220. V. Kaman, X. Zheng, S. Yuan, J. Klingshirn, C. Pusarla, R.J. Helkey, O. Jerphagnon, J.E. Bowers, A \(32 \times 10~\mbox{Gb}/\mbox{s}\) DWDM metropolitan network demonstration using wavelength-selective photonic crossconnects and narrow-band EDFAs. IEEE Photonics Technol. Lett. 17, 1977–1979 (2005)

    ADS  Google Scholar 

  221. www.polatis.com

  222. A.N. Dames, J.H. James, Optical fiber switching assembly. US patent No. US 7,106,925 B2 (2006)

    Google Scholar 

  223. A.N. Dames, Piezo-electric actuator, US Patent No. US 7,026,745 B2 (2006)

    Google Scholar 

  224. A.N. Dames, Beam steering arrangement and optical switches. US Patent No. US 7,095,915 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifu Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yuan, S., Bowers, J.E. (2017). Optical Switches. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-42367-8_10

Download citation

Publish with us

Policies and ethics