Skip to main content

Bistable Perception and Fractal Reasoning

  • 639 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9781)


A visual percept is deemed bistable if there are two potential yet mutually exclusive interpretations of the percept between which the human visual system cannot unambiguously choose. Perhaps the most famous example of such a bistable visual percept is the Necker Cube. In this paper, we present a novel computational model of bistable perception based on visual analogy using fractal representations.


  • Bistable Perception
  • Necker Cube (NC)
  • Fractal Representation
  • Visual Percepts
  • Coarse Resolution Image

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42333-3_18
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-42333-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. Appel, A., Rohlf, J., Stein, A.: The haloed line effect for hidden line elimination, vol. 13. ACM (1979)

    Google Scholar 

  2. Kawamoto, A., Anderson, J.: A neural network model of multistable perception. Acta Psychol. 59, 35–65 (1985)

    CrossRef  Google Scholar 

  3. Kogo, N., Galli, A., Wagemans, J.: Switching dynamics of border ownership: a stochastic model for bi-stable perception. Vis. Res. 51(18), 2085–2098 (2011)

    CrossRef  Google Scholar 

  4. McGreggor, K., Goel, A.: Confident reasoning on the ravens progressive matrices test. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, Quebec (2014)

    Google Scholar 

  5. McGreggor, K., Kunda, M., Goel, A.: Fractals and ravens. Artif. Intell. 215, 1–23 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Nagao, N., Nishimura, H., Matsui, N.: A neural chaos model of multistable perception. Neural Process. Lett. 12(3), 267–276 (2000)

    CrossRef  MATH  Google Scholar 

  7. Necker, L.: On an apparent change of position in a drawing or engraved figure of a crystal. Lond. Edinb. Philos. Mag. J. Sci. 1, 329–337 (1832). (Third Series)

    Google Scholar 

  8. Rumelhart, D., Smolensky, P., McClelland, J., Hinton, G.: Schema and sequential thought processes in PDP models. In: Rumelhart, D., McCleland, J. (eds.) Parallel Distributed Processing, pp. 7–57 (1986)

    Google Scholar 

  9. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Keith McGreggor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

McGreggor, K., Goel, A. (2016). Bistable Perception and Fractal Reasoning. In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds) Diagrammatic Representation and Inference. Diagrams 2016. Lecture Notes in Computer Science(), vol 9781. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42332-6

  • Online ISBN: 978-3-319-42333-3

  • eBook Packages: Computer ScienceComputer Science (R0)