Skip to main content

Haptic Feedback to Compensate for the Absence of Horizon Cues During Landing

  • Conference paper
  • First Online:
Haptics: Perception, Devices, Control, and Applications (EuroHaptics 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9775))

Abstract

When landing a plane, pilots could face several landing illusions that are accentuated at night or in a featureless environment. In the current study, we compare participants landing trajectories in a featureless environment with and without haptic feedback. We asked the participants to land a virtual object during featured (F+) and featureless night conditions (F−); with (H+) and without haptic feedback (H−). The results showed that the haptic feedback facilitated lateral and up-down movements. This benefit was less evident between the visual conditions suggesting that participants were relying on haptic cues during the task. This attentional shift could reduce visual illusions during night landings, where they are accentuated by the fact that experienced pilots rely mainly on visual inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foyle, D.C., Kaiser, M.K., Johnson, W.W.: Visual cues in low-level flight: implications for pilotage, training, simulation, and enhanced/synthetic vision systems. In: American Helicopter Society 48th Annual Forum, vol. 1, pp. 253–260 (1992)

    Google Scholar 

  2. Bulkley, N.K., Dyre, B.P., Lew, R., Caufield, K.: A peripherally-located virtual instrument landing display affords more precise control of approach path during simulated landings than traditional instrument landing displays. In: Proceeding 53rd HFES (2009)

    Google Scholar 

  3. I. R. Moorhead, S. Holmes, and A. Furnell: Understanding multisensory integration for pilot spatial orientation. In: European Office of Aerospace Research and Development (2004)

    Google Scholar 

  4. Gibbs, R.W.: Visual spatial disorientation: revisiting the black hole illusion. Aviat. Space Environ. Med. 78(8), 801–808 (2007)

    Google Scholar 

  5. Mertens, H.W., Lewis, M.F.: Effect of different runway size on pilot performance during simulated night landing approaches (No. FAA-AM-81-6). FEDERAL AVIATION ADMINISTRATION WASHINGTON DC OFFICE OF AVIATION MEDICINE (1981)

    Google Scholar 

  6. Nicholson, C.M., Stewart, P.C.: Effects of lighting and distraction on the black hole illusion in visual approaches. Int. J. Aviat. Psychol. 23(4), 319–334 (2013)

    Article  Google Scholar 

  7. Gibb, R., Schvaneveldt, R., Gray, R.: Visual misperception in aviation: glide path performance in a black hole environment. Hum. Factors: J. Hum. Fact. Ergon. Soc. 50(4), 699–711 (2008)

    Article  Google Scholar 

  8. Thompson, R.C.: The “black hole” night visual approach: calculated approach paths resulting from flying a constant visual vertical angle to level and upslope runways. Int. J. Aviat. Psychol. 20(1), 59–73 (2009)

    Article  Google Scholar 

  9. Watson, D.: Illusion: The last thing needed on approach and landing in the CAA Aviation Bulletin, July 1992

    Google Scholar 

  10. Navathe, P.D., Singh, B.: An operation definition for spatial disorientation. Aviat. Space Environ. Med. 65, 1153–1155 (1994)

    Google Scholar 

  11. Crowley, J.S.: Human factors of night vision devices: Anecdotes from the field concerning visual illusions and other effects. USAARL REPORT No. 91-15, May 1991

    Google Scholar 

  12. Geri, G.A., Winterbottom, M.D., Pierce, B.J.: Evaluating the spatial resolution of flight-simulator visual displays. US Air Force Research Lab. (2004)

    Google Scholar 

  13. Kaiser, M.K., Gans, N.R., Dixon, W.E.: Vision-based estimation for guidance, navigation, and control of an aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 46(3), 1064–1077 (2010)

    Article  Google Scholar 

  14. Weber, B., Schatzle, S., Hulin, T., Preusche, C., Deml, B.: Evaluation of a vibrotactile feedback device for spatial guidance. In: Conference Rec. 2011 IEEE World Haptics (2011)

    Google Scholar 

  15. van Erp, J.B.F., Groen, E.L., Bos, J.E., van Veen, H.A.H.C.: A tactile cockpit instrument supports the control of self-motion during spatial disorientation. J. Hum. Factors Ergon. Soc. 48(2), 219–228 (2006)

    Article  Google Scholar 

  16. Elliott, L.R., van Erp, J.B.F., Redden, E.S., Duistermaat, M.: Field-based validation of a tactile navigation device. IEEE Trans. Haptics 3(2), 78–87 (2010)

    Article  Google Scholar 

  17. Chiasson, J., McGrath, B.J., Rupert, A.H.: Enhanced situation awareness in sea, air and land environments. In: Symposium. on Spatial Disorientation in Military Vehicles (2002)

    Google Scholar 

  18. McGrath, J., Estrada, A., Braithwaite, M.G., Raj, A.K., Rupert, A.H.: Tactile situation awareness system flight demonstration final report. USAARL Report No. 2004-10 (2004)

    Google Scholar 

  19. McGrath, B.J.: Tactile instrument for aviation. Nav. Aerosp. Med. Res. Lab., Pensacola (2000)

    Google Scholar 

  20. van Erp, J.B., van Veen, H.A., Jansen, C., Dobbins, T.: Waypoint navigation with a vibrotactile waist belt. ACM Trans. Applied Perception 2(2), 106–117 (2005)

    Article  Google Scholar 

  21. Ziat, M.: Conception et implémentation d’une fonction zoom haptique sur PDAs: Expérimentations et usages. Ph.D Thesis, UTC, November 2006

    Google Scholar 

  22. Repperger, D.W., Gilkey, R.H., Green, R., LaFleur, T., Haas, M.W.: Effects of haptic feedback and turbulence on landing performance using an immersive cave automatic virtual environment (CAVE). Percept. Mot. Skills 85, 1139–1154 (1997)

    Article  Google Scholar 

  23. SensAble Technologies Inc., “PHANToM OMNI,” (2015). http://www.sensable.com

  24. Wang, J., Pan, X., Pan, X., Xue, Y., Ye, Y.: A survey of force feedback in flight safety enhancement. Procedia Eng. 29, 2303–2307 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounia Ziat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ziat, M., Wagner, S., Frissen, I. (2016). Haptic Feedback to Compensate for the Absence of Horizon Cues During Landing. In: Bello, F., Kajimoto, H., Visell, Y. (eds) Haptics: Perception, Devices, Control, and Applications. EuroHaptics 2016. Lecture Notes in Computer Science(), vol 9775. Springer, Cham. https://doi.org/10.1007/978-3-319-42324-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42324-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42323-4

  • Online ISBN: 978-3-319-42324-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics