Advertisement

A Novel Approach for Upper Limb Robotic Rehabilitation for Stroke Patients

  • Michele BarsottiEmail author
  • Edoardo Sotgiu
  • Daniele Leonardis
  • Mine Sarac
  • Giada Sgherri
  • Giuseppe Lamola
  • Fanciullacci Chiara
  • Caterina Procopio
  • Carmelo Chisari
  • Antonio Frisoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9775)

Abstract

This paper presents a novel neuro-rehabilitation system for recovery of arm and hand motor functions involved in reaching and grasping. The system provides arm weight support and robotic assistance of the hand closing/opening within specific exercises in virtual reality. A user interface allows the clinicians to perform an easy parametrization of the virtual scenario, customizing the exercises and the robotic assistance to the needs of the patient and encouraging training of the hand with proper recruitment of the residual motor functions. Feasibility of the proposed rehabilitation system was evaluated through an experimental rehabilitation session, conducted by clinicians with 4 healthy participants and 2 stroke patients. All subjects were able to perform the proposed exercises with parameters adapted to their specific motor capabilities. All patients were able to use the proposed system and to accomplishing the rehabilitation tasks following the suggestion of the clinicians. The effectiveness of the proposed neuro-rehabilitation will be evaluated in an imminent prolonged clinical study involving more stroke patients.

Keywords

Robotic rehabilitation Stroke Virtual reality Exoskeleton Neurorheabilitation Haptic feedback 

Notes

Acknowledgements

This work has been partially funded from the EU Horizon2020 project n. 644839 CENTAURO and by the WEARHAP project funded by EU within the 7th framework program.

References

  1. 1.
    World Medical Association: World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 310(20), 2191–2194 (2013)Google Scholar
  2. 2.
    Barreca, S., Wolf, S.L., Fasoli, S., Bohannon, R.: Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabilitation Neural Repair 17(4), 220–226 (2003)CrossRefGoogle Scholar
  3. 3.
    Barsotti, M., Leonardis, D., Loconsole, C., Solazzi, M., Sotgiu, E., Procopio, C., Chisari, C., Bergamasco, M., Frisoli, A.: A full upper limb robotic exoskeleton for reaching and grasping rehabilitation triggered by mi-bci. In: IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 49–54. IEEE (2015)Google Scholar
  4. 4.
    Chen, G., Zhang, S.: Fully-compliant statically-balanced mechanisms without prestressing assembly: concepts and case studies. Mech. Sci. 2, 169–174 (2011)CrossRefGoogle Scholar
  5. 5.
    Comani, S., Velluto, L., Schinaia, L., Cerroni, G., Serio, A., Buzzelli, S., Sorbi, S., Guarnieri, B.: Monitoring neuro-motor recovery from stroke with high-resolution eeg, robotics and virtual reality: a proof of concept. IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 1106–1116 (2015)CrossRefGoogle Scholar
  6. 6.
    Dipietro, L., Krebs, H.I., Fasoli, S.E., Volpe, B.T., Stein, J., Bever, C., Hogan, N.: Changing motor synergies in chronic stroke. J. Neurophysiol. 98, 757–768 (2007)CrossRefGoogle Scholar
  7. 7.
    Frisoli, A., Procopio, C., Chisari, C., Creatini, I., Bonfiglio, L., Bergamasco, M., Rossi, B., Carboncini, M.: Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. J. NeuroEng. Rehabil. (2012)Google Scholar
  8. 8.
    Hesse, S., Mehrholz, J., Werner, C.: Robot-assisted upper and lower limb rehabilitation after stroke. DEUTSCHES ARZTEBLATT-KOLN- 105(18), 330 (2008)Google Scholar
  9. 9.
    Krabben, T., Molier, B.I., Houwink, A., Rietman, J.S., Buurke, J.H., Prange, G.B.: Circle drawing as evaluative movement task in stroke rehabilitation: an explorative study. J. NeuroEng. Rehabil. 8(1), 1–11 (2011)CrossRefGoogle Scholar
  10. 10.
    Lenzo, B., Fontana, M., Marcheschi, S., Salsedo, F., Frisoli, A., Bergamasco, M.: Trackhold: a novel passive arm-support device. J. Mech. Robot. 8(2) (2015). http://www.wearable-robotics.com Google Scholar
  11. 11.
    Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V., Procopio, C., Lamola, G., Chisari, C., Bergamasco, M., Frisoli, A.: An emg-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8(2), 140–151 (2015)CrossRefGoogle Scholar
  12. 12.
    Mehrholz, J., Platz, T., Kugler, J., Pohl, M.: Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Stroke 40(5), e392–e393 (2009)CrossRefGoogle Scholar
  13. 13.
    Montagner, A., Frisoli, A., Borelli, L., Procopio, C., Bergamasco, M., Carboncini, M., Rossi, B.: A pilot clinical study on robotic assisted rehabilitation in vr with an arm exoskeleton device. In: Virtual Rehabilitation 2007, pp. 57–64 (2007)Google Scholar
  14. 14.
    Muellbacher, W., Richards, C., Ziemann, U., Wittenberg, G., Weltz, D., Boroojerdi, B., Cohen, L., Hallett, M.: Improving hand function in chronic stroke. Arch. Neurol. 59(8), 1278–1282 (2002)CrossRefGoogle Scholar
  15. 15.
    Nykanen, K.: The effectiveness of robot-aided upper limb therapy in stroke rehabilitation: a systematic review of randomized controlled studies. Master’s thesis, University of Jyvskyl, Institute of Health Sciences, Physiotherapy (2010)Google Scholar
  16. 16.
    Oliveira, L.F., Simpson, D.M., Nadal, J.: Calculation of area of stabilometric signals using principal component analysis. Physiol. Meas. 17(4), 305 (1996)CrossRefGoogle Scholar
  17. 17.
    Whitall, J., Waller, S.M., Silver, K.H.C., Macko, R.F.: Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31(10), 2390–2395 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michele Barsotti
    • 1
    Email author
  • Edoardo Sotgiu
    • 1
  • Daniele Leonardis
    • 1
  • Mine Sarac
    • 1
  • Giada Sgherri
    • 2
  • Giuseppe Lamola
    • 2
  • Fanciullacci Chiara
    • 2
  • Caterina Procopio
    • 1
  • Carmelo Chisari
    • 2
  • Antonio Frisoli
    • 1
  1. 1.PERCRO Lab, Tecip InstituteScuola Superiore Sant’AnnaPisaItaly
  2. 2.Department of Neuroscience, Unit of NeurorehabilitationUniversity Hospital of PisaPisaItaly

Personalised recommendations