A Linear Optimization Procedure for an EMG-driven NeuroMusculoSkeletal Model Parameters Adjusting: Validation Through a Myoelectric Exoskeleton Control

  • Domenico Buongiorno
  • Francesco Barone
  • Massimiliano Solazzi
  • Vitoantonio Bevilacqua
  • Antonio Frisoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9775)


This paper presents a linear optimization procedure able to adapt a simplified EMG-driven NeuroMusculoSkeletal (NMS) model to the specific subject. The optimization procedure could be used to adjust a NMS model of a generic human articulation in order to predict the joint torque by using ElectroMyoGraphic (EMG) signals. The proposed approach was tested by modeling the human elbow joint with only two muscles. Using the cross-validation method, the adjusted elbow model has been validated in terms of both torque estimation performance and predictive ability. The experiments, conducted with healthy people, have shown both good performance and high robustness. Finally, the model was used to control directly and continuously a exoskeleton rehabilitation device through EMG signals. Data acquired during free movements prove the model ability to detect the human’s intention of movement.


Myoelectric control NeuroMusculoSkeletal model Rehabilitation Exoskeleton EMG signals 



This work has been partially funded from the EU Horizon2020 project n. 644839 CENTAURO and the EU FP7 project n. 601165 WEARHAP.


  1. 1.
    Basteris, A., Nijenhuis, S.M., Stienen, A., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. Neuroeng. Rehabil. 11(1), 111 (2014)CrossRefGoogle Scholar
  2. 2.
    Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367 (2004)Google Scholar
  3. 3.
    Buongiorno, D., Barsotti, M., Sotgiu, E., Loconsole, C., Solazzi, M., Bevilacqua, V., Frisoli, A.: A neuromusculoskeletal model of the human upper limb for a myoelectric exoskeleton control using a reduced number of muscles. In: 2015 IEEE World Haptics Conference (WHC), pp. 273–279, June 2015Google Scholar
  4. 4.
    Burdet, E., Franklin, D.W., Milner, T.E.: Human Robotics: Neuromechanics and Motor Control. MIT Press, Cambridge (2013)Google Scholar
  5. 5.
    Cavallaro, E.E., Rosen, J., Perry, J.C., Burns, S.: Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans. Biomed. Eng. 53(11), 2387–2396 (2006)CrossRefGoogle Scholar
  6. 6.
    Desrosiers, J., Bourbonnais, D., Corriveau, H., Gosselin, S., Bravo, G.: Effectiveness of unilateral and symmetrical bilateral task training for arm during the subacute phase after stroke: a randomized controlled trial. Clin. Rehabil. 19(6), 581–593 (2005)CrossRefGoogle Scholar
  7. 7.
    Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003)CrossRefGoogle Scholar
  8. 8.
    Fleischer, C., Hommel, G.: A human-exoskeleton interface utilizing electromyography. IEEE Trans. Robot. 24(4), 872–882 (2008)CrossRefGoogle Scholar
  9. 9.
    Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., Bergamasco, M.: A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pp. 195–201. IEEE (2005)Google Scholar
  10. 10.
    Hassani, W., Mohammed, S., Rifai, H., Amirat, Y.: Emg based approach for wearer-centered control of a knee joint actuated orthosis. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 990–995. IEEE (2013)Google Scholar
  11. 11.
    Hermens, H.J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., Hägg, G.: European recommendations for surface electromyography. Roessingh Res. Dev. 8(2), 13–54 (1999)Google Scholar
  12. 12.
    Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B: Biol. Sci. 126(843), 136–195 (1938)CrossRefGoogle Scholar
  13. 13.
    Holzbaur, K.R., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6), 829–840 (2005)CrossRefGoogle Scholar
  14. 14.
    Huang, V.S., Krakauer, J.W.: Robotic neurorehabilitation: a computational motor learning perspective. J. Neuroeng. Rehabil. 6(1), 5 (2009)CrossRefGoogle Scholar
  15. 15.
    Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., Roby-Brami, A.: Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Front. Hum. Neurosci. 8, 947 (2014)Google Scholar
  16. 16.
    Kiguchi, K., Hayashi, Y.: An emg-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(4), 1064–1071 (2012)CrossRefGoogle Scholar
  17. 17.
    Leys, D., Hénon, H., Mackowiak-Cordoliani, M.A., Pasquier, F.: Poststroke dementia. Lancet Neurol. 4(11), 752–759 (2005)CrossRefGoogle Scholar
  18. 18.
    Lloyd, D.G., Besier, T.F.: An emg-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003)CrossRefGoogle Scholar
  19. 19.
    Lo, A.C., Guarino, P.D., Richards, L.G., Haselkorn, J.K., Wittenberg, G.F., Federman, D.G., Ringer, R.J., Wagner, T.H., Krebs, H.I., Volpe, B.T., et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362(19), 1772–1783 (2010)CrossRefGoogle Scholar
  20. 20.
    Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., Troncossi, M., Foumashi, M.M., Mazzotti, C., Castelli, V.P.: An emg-based robotic hand exoskeleton for bilateral training of grasp. In: World Haptics Conference (WHC), pp. 537–542. IEEE (2013)Google Scholar
  21. 21.
    Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6(1), 20 (2009)CrossRefGoogle Scholar
  22. 22.
    Moreland, J.D., Thomson, M.A., Fuoco, A.R.: Electromyographic biofeedback to improve lower extremity function after stroke: a meta-analysis. Arch. Phys. Med. Rehabil. 79(2), 134–140 (1998)CrossRefGoogle Scholar
  23. 23.
    Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)CrossRefGoogle Scholar
  24. 24.
    Sartori, M., Reggiani, M., Pagello, E., Lloyd, D.G.: Modeling the human knee for assistive technologies. IEEE Trans. Biomed. Eng. 59(9), 2642–2649 (2012)CrossRefGoogle Scholar
  25. 25.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  26. 26.
    Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Domenico Buongiorno
    • 1
  • Francesco Barone
    • 2
  • Massimiliano Solazzi
    • 1
  • Vitoantonio Bevilacqua
    • 2
  • Antonio Frisoli
    • 1
  1. 1.PERCRO Lab, Tecip InstituteScuola Superiore Sant’AnnaPisaItaly
  2. 2.Dipartimento di Ingegneria Elettrica e dell’Informazione (DEI)Politecnico di BariBariItaly

Personalised recommendations