Observing Touch from Video: The Influence of Social Cues on Pleasantness Perceptions

  • Christian J. A. M. Willemse
  • Gijs Huisman
  • Merel M. Jung
  • Jan B. F. van Erp
  • Dirk K. J. Heylen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9775)

Abstract

In order to advance the understanding of affective touch perceptions, and in particular to inform the design of physical human-robot interactions, an online video study was conducted in which observed stroking touches were assessed on perceived pleasantness. Touches were applied at different velocities and either with a human hand, a robot hand, a mannequin hand, or a plastic tube. In line with earlier research, it was found that stroking touches with a velocity of ca. 3 cm/s were rated as most pleasant. Moreover, the subjective pleasantness scores suggest that the stimulus type interacts with the stroking velocity. The possible roles that social agency, expectations, and anthropomorphism may play in perceptions of pleasantness are discussed.

Keywords

Affective touch Top-down perception CT-Afferent fibers Human-robot interaction Video study 

References

  1. 1.
    Aldebaran Robotics (2015). http://www.aldebaran.com
  2. 2.
    CrowdFlower (2015). http://www.crowdflower.com
  3. 3.
    Ackerley, R., Backlund Wasling, H., Liljencrantz, J., Olausson, H., Johnson, R.D., Wessberg, J.: Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J. Neurosci. 34(8), 2879–2883 (2014)CrossRefGoogle Scholar
  4. 4.
    Banissy, M.J., Kadosh, R.C., Maus, G.W., Walsh, V., Ward, J.: Prevalence, characteristics and a neurocognitive model of mirror-touch synaesthesia. Exp. Brain Res. 198(2–3), 261–272 (2009)CrossRefGoogle Scholar
  5. 5.
    Blakemore, S.J., Bristow, D., Bird, G., Frith, C., Ward, J.: Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain 128(7), 1571–1583 (2005)CrossRefGoogle Scholar
  6. 6.
    Ebisch, S.J.H., Ferri, F., Salone, A., Perrucci, M.G., D’Amico, L., Ferro, F.M., Romani, G.L., Gallese, V.: Differential involvement of somatosensory and interoceptive cortices during the observation of affective touch. J. Cogn. Neurosci. 23(7), 1808–1822 (2011)CrossRefGoogle Scholar
  7. 7.
    van Erp, J.B.F., Toet, A.: Social touch in human-computer interaction. Front. Digit. Humanit. 2(2), 1–14 (2015)Google Scholar
  8. 8.
    Essick, G.K., James, A., McGlone, F.P.: Psychophysical assessment of the affective components of non-painful touch. Neuroreport 10(10), 2083–2087 (1999)CrossRefGoogle Scholar
  9. 9.
    Essick, G.K., McGlone, F., Dancer, C., Fabricant, D., Ragin, Y., Phillips, N., Jones, T., Guest, S.: Quantitative assessment of pleasant touch. Neurosci. Biobehav. Rev. 34(2), 192–203 (2010)CrossRefGoogle Scholar
  10. 10.
    Francis, S., Rolls, E.T., Bowtell, R., McGlone, F., O’Doherty, J., Browning, A., Clare, S., Smith, E.: The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10(3), 453–459 (1999)CrossRefGoogle Scholar
  11. 11.
    Funke, F., Reips, U.D.: Why semantic differentials in web-based research should be made from visual analogue scales and not from 5-point scales. field methods 24(3), 310–327 (2012)CrossRefGoogle Scholar
  12. 12.
    Gazzola, V., Spezio, M.L., Etzel, J.A., Castelli, F., Adolphs, R., Keysers, C.: Primary somatosensory cortex discriminates affective significance in social touch. Proc. Natl. Acad. Sci. 109(25), E1657–E1666 (2012)CrossRefGoogle Scholar
  13. 13.
    Johnson, K.O., Yoshioka, T., Vega-Bermudez, F.: Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17(6), 539–558 (2000)CrossRefGoogle Scholar
  14. 14.
    Keysers, C., Gazzola, V.: Expanding the mirror: vicarious activity for actions, emotions, and sensations. Curr. Opin. Neurobiol. 19(6), 666–671 (2009)CrossRefGoogle Scholar
  15. 15.
    Kress, I.U., Minati, L., Ferraro, S., Critchley, H.D.: Direct skin-to-skin vs. indirect touch modulates neural responses to stroking vs. tapping. Neuroreport 22(13), 646–651 (2011)CrossRefGoogle Scholar
  16. 16.
    Löken, L.S., Evert, M., Wessberg, J.: Pleasantness of touch in human glabrous and hairy skin: order effects on affective ratings. Brain Res. 1417, 9–15 (2011)CrossRefGoogle Scholar
  17. 17.
    Löken, L.S., Wessberg, J., Morrison, I., McGlone, F., Olausson, H.: Coding of pleasant touch by unmyelinated afferents in humans. Nat. Neurosci. 12(5), 547–548 (2009)CrossRefGoogle Scholar
  18. 18.
    Lucas, M.V., Anderson, L.C., Bolling, D.Z., Pelphrey, K.A., Kaiser, M.D.: Dissociating the neural correlates of experiencing and imagining affective touch. Cereb. Cortex 25(9), 2623–2630 (2015)CrossRefGoogle Scholar
  19. 19.
    McCabe, C., Rolls, E.T., Bilderbeck, A., McGlone, F.: Cognitive influences on the affective representation of touch and the sight of touch in the human brain. Soc. Cogn. Affect. Neurosci. 3, 97–108 (2008)CrossRefGoogle Scholar
  20. 20.
    Mcglone, F., Olausson, H., Boyle, J.A., Jones-Gotman, M., Dancer, C., Guest, S., Essick, G.: Touching and feeling: Differences in pleasant touch processing between glabrous and hairy skin in humans. Eur. J. Neurosci. 35(11), 1782–1788 (2012)CrossRefGoogle Scholar
  21. 21.
    Montagu, A.: Touching: The human significance of the skin. Columbia University Press, New York (1971)Google Scholar
  22. 22.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)CrossRefGoogle Scholar
  23. 23.
    Morrison, I., Björnsdotter, M., Olausson, H.: Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds. J. Neurosci. 31(26), 9554–9562 (2011)CrossRefGoogle Scholar
  24. 24.
    Morrison, I., Löken, L.S., Olausson, H.: The skin as a social organ. Exp. Brain Res. 204(3), 305–314 (2010)CrossRefGoogle Scholar
  25. 25.
    Nomura, T., Kanda, T., Suzuki, T., Kato, K.: Prediction of human behavior in human-robot interaction using psychological scales for anxiety and negative attitudes toward robots. IEEE Trans. Robot. 24(2), 442–451 (2008)CrossRefGoogle Scholar
  26. 26.
    Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B.G., Starck, G., Ekholm, S., Strigo, I., Worsley, K., Vallbo, A.B., Bushnell, M.C.: Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5(9), 900–904 (2002)CrossRefGoogle Scholar
  27. 27.
    Olausson, H.W., Cole, J., Vallbo, Å., McGlone, F., Elam, M., Krämer, H.H., Rylander, K., Wessberg, J., Bushnell, M.C.: Unmyelinated tactile afferents have opposite effects on insular and somatosensory cortical processing. Neurosci. Lett. 436(2), 128–132 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian J. A. M. Willemse
    • 1
    • 2
  • Gijs Huisman
    • 1
  • Merel M. Jung
    • 1
  • Jan B. F. van Erp
    • 1
    • 2
  • Dirk K. J. Heylen
    • 1
  1. 1.Human Media InteractionUniversity of TwenteEnschedeThe Netherlands
  2. 2.Perceptual and Cognitive SystemsTNOSoesterbergThe Netherlands

Personalised recommendations