Reconsideration of Ouija Board Motion in Terms of Haptics Illusions

  • Takahiro ShitaraEmail author
  • Yuriko Nakai
  • Haruya Uematsu
  • Yem Vibol
  • Hiroyuki Kajimoto
  • Satoshi Saga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9775)


Bodily movements caused involuntarily, for example while using a Ouija board, are called ideomotor actions. Our goal is to clarify the conditions under which Ouija board motion occurs, comparing visual, force, and vibrotactile cues and using a novel pseudo haptic illusion. In this study, we used a fingertip-type tactile display to find the conditions of occurrence of ideomotor action with the Ouija board. Results showed that vibrotactile cues lead to the occurrence of Ouija board motion, and that visual cues reinforce the displacement of motion.


Ideomotor action Pseudo haptics 2.5-dimensional tactile display 



This work was supported by JSPS KAKENHI Grant Number 15H05923 (Grant-in-Aid for Scientific Research on Innovative Areas, “Innovative SHITSUKSAN Science and Technology”).


  1. 1.
    Stock, A., Stock, C.: A short history of ideo-motor action. Psychol. Res. 68(2–3), 176–188 (2004)CrossRefGoogle Scholar
  2. 2.
    Amemiya, T., Gomi, H.: Distinct pseudo-attraction force sensation by a thumb-sized vibrator that oscillates asymmetrically. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part II. LNCS, vol. 8619, pp. 88–95. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Rekimoto, J.: Traxion: a tactile interaction device with virtual force sensation. In: Proceedings of the ACM Symposium of User Interface Software and Technology, pp. 427–432 (2013)Google Scholar
  4. 4.
    Yem, V., Kuzuoka, H., Yamashita, N., Ohta, S., Takeuchi, Y.: Hand-Skill learning using outer-covering haptic display. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part I. LNCS, vol. 8618, pp. 201–207. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Kuniyasu, Y., Sato, M., Fukushima, S., Kajimoto, H.: Transmission of forearm motion by tangential deformation of the skin. In: Proceedings of Augmented Human International Conference (2012)Google Scholar
  6. 6.
    Shull, P., Bark, K., Cutosky, M.: Skin nonlinearities and their effect on user perception for rotational skin stretch. In: Proceedings of the IEEE Haptics Symposium, pp. 77–82 (2010)Google Scholar
  7. 7.
    Kojima, Y., Hashimoto, Y., Kajimoto, H.: Pull-Navi. In: Proceedings of the ACM SIGGRAPH Emerging Technologies Session (2009)Google Scholar
  8. 8.
    Sato, M., Matsue, R., Hashimoto, Y., Kajimoto, H.: Development of a head rotation interface by using hanger reflex. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, pp. 534–538 (2009)Google Scholar
  9. 9.
    Nakamura, T., Nishimura, N., Sato, M., Kajimoto, H.: Development of a wrist-twisting haptic display using the hanger reflex. In: Proceedings of Advances in Computer Entertainment Technology Conference (2014)Google Scholar
  10. 10.
    Shikata, K., Makino, Y., and Shinoda, H.: Inducing elbow joint flexion by shear deformation of arm skin. In: Proceedings of World Haptics Conference (2015)Google Scholar
  11. 11.
    Sato, M., Nakamura, T., Kajimoto, H.: Movement and pseudo haptics induced by skin lateral deformation in hanger reflex. In: Proceedings of Special Interest Group on Telexistence (in Japanese) (2014)Google Scholar
  12. 12.
    Edin, B.B., Johansson, N.: Skin strain patterns provide kinaesthetic information to the human central nervous system. J. Physiol. 487(1), 243–251 (1995)CrossRefGoogle Scholar
  13. 13.
    Collins, D.F., Prochazka, A.: Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J. Physiol. 496(3), 857–871 (1996)CrossRefGoogle Scholar
  14. 14.
    Ebied, A.M., Kemp, G.J., Frostick, S.P.: The role of cutaneous sensation in the motor function of the hand. J. Orthop. Res. 22(4), 862–866 (2004)CrossRefGoogle Scholar
  15. 15.
    Mengchen, Z. Farheen, T.: OuijaPlus: A force feedback Ouija board. In: Proceedings of Human Interface Technologies (2008)Google Scholar
  16. 16.
    Saga, S., Deguchi, K.: Lateral-force-based 2.5-dimensional tactile display for touch screen. In: Proceedings of Haptics Symposium, pp. 15–22 (2012)Google Scholar
  17. 17.
    Sato, M., Isshiki, M., Liping, L., Akahane, K.: Spidar-mouse: a design of open source interface for SPIDAR. In: Proceedings of Human Communication Group Symposium (in Japanese) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Takahiro Shitara
    • 1
    Email author
  • Yuriko Nakai
    • 1
  • Haruya Uematsu
    • 1
  • Yem Vibol
    • 1
  • Hiroyuki Kajimoto
    • 1
  • Satoshi Saga
    • 2
  1. 1.The University of Electro-CommunicationsChofuJapan
  2. 2.University of TsukubaTsukubaJapan

Personalised recommendations