Fingertip Recovery Time Depending on Viscoelasticity

  • Maria Laura D’Angelo
  • Darwin G. Caldwell
  • Ferdinando Cannella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9774)

Abstract

The aim of this paper is to investigate the recovery time of human-fingertip’s mechanical properties after indentations cycles. To determine the influencing parameters, three indentation velocities, five recovery times and three subjects were tested. During each experiment, the fingertip of participant was driven against a flat surface, while indentation displacement and velocity were controlled. The results show not only the indentation forces values increase depending on the indentation velocity increment, but also they decrease depending on the number of cycles. While the fingertip recovery depends on the time, but not on the indentation velocity. Finally the recovery time was determined: in 5 min the fingertip restored 99.6 % of the initial mechanical properties.

Keywords

Recovery time Viscoelasticity effect Fingertip mechanical properties Indentation pulp cycles 

Notes

Acknowledgements

The authors wish to acknowledge Matteo Bianchi, Prof. Gianluca Rossi and Prof. Antonio Bicchi who contributed in test rig development. This work was supported in parts by grants from the EU FP7 (project no. 601165 WEARHAP).

References

  1. 1.
    Maeno, T., Kobayashi, K., Yamazaki, N.: Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. Ser. C 41(1), 94–100 (1998)CrossRefGoogle Scholar
  2. 2.
    Srinivasan, M.A., LaMotte, R.H.: Encoding of shape in the responses of cutaneous mechanoreceptors. In: Franzén, O., Westman, J. (eds.) Information Processing in the Somatosensory System. Wenner Gren Center International Symposium Series. Macmillan Education, London (1991)Google Scholar
  3. 3.
    Dandekar, K., Srinivasan, M.A.: The Role of Mechanics in Tactile Sensing of Shape. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge (1997)Google Scholar
  4. 4.
    Gerling, G.J., Thomas, G.W.: The effect of fingertip microstructures on tactile edge perception. In: WHC, pp. 63–72. IEEE Computer Society (2005). ISBN 0-7695-2310-2Google Scholar
  5. 5.
    Gulati, R.J., Srinivasan, M.A.: Human fingerpad under indentation I: static and dynamic force response. ASME Publ. Bed 29, 261 (1995)Google Scholar
  6. 6.
    Serina, E.R., Mote Jr., C.D., Rempel, D.: Force response of the fingertip pulp to repeated compression-effects of loading rate, loading angle and anthropometry. J. Biomech. 30(10), 1035–1040 (1997)CrossRefGoogle Scholar
  7. 7.
    Barbenel, J.C., Evans, J.H.: The time-dependent mechanical properties of skin. J. Invest. Dermatol. 69, 318–320 (1977)CrossRefGoogle Scholar
  8. 8.
    Pereira, J.M., Davis, B.R., Mansour, J.M.: Dynamic measurement of the viscoelastic properties of skin. J. Biomech. 24(2), 157–162 (1991)CrossRefGoogle Scholar
  9. 9.
    Lanir, Y.: Skin mechanics. In: Skalak, R., Chien, S. (eds.) Handbook of Bioengineering. McGraw-Hill, New York (1987)Google Scholar
  10. 10.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)CrossRefGoogle Scholar
  11. 11.
    Pawluk, D.T., Howe, R.D.: Dynamic lumped element response of the human fingerpad. J. Biomech. Eng. 121(2), 178–183 (1999)CrossRefGoogle Scholar
  12. 12.
    Pawluk, D.T., Howe, R.D.: Dynamic contact of the human fingerpad against a flat surface. J. Biomech. Eng. 121(6), 605–611 (1999)CrossRefGoogle Scholar
  13. 13.
    Silver, F.H.: Biological Materials Structure, Mechanical Properties, and Modeling of Soft Tissues. New York University Press, New York (1987)Google Scholar
  14. 14.
    Serina, E.R., Mote, C.D., Rampel, D.M.: Mechanical properties of the fingertip pulp under repeated, dynamic, compressive loading. ASME Publ. Bed 31, 245–246 (1995)Google Scholar
  15. 15.
    Hongbin, L., Noonan, D.P., Zweiri, Y.H., Althoefer, K.A., Seneviratne, L.D.: The development of nonlinear viscoelastic model for the application of soft tissue identification. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 208–213 (2007)Google Scholar
  16. 16.
    D’Angelo, M.L., Cannella, F., Bianchi, M., D’Imperio, M., Battaglia, E., Poggiani, M., Rossi, G., Bicchi, A., Caldwell, D.G.: An integrated approach to characterize mechanical properties of human fingertip. IEEE Trans. Haptics (2015, under press)Google Scholar
  17. 17.
    Wu, J.Z., Dong, R.G., Smutz, W.P., Rakheja, S.: Dynamic interaction between a fingerpad and a flat surface: experiments and analysis. Med. Eng. Phys. 25(5), 397–406 (2003)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Wu, J.Z., Welcome, D.E., Krajnak, K., Dong, R.G.: Finite element analysis of the penetrations of shear and normal vibrations into the soft tissues in a fingertip. Med. Eng. Phys. 29(6), 718–727 (2007)CrossRefGoogle Scholar
  20. 20.
    Kumar, S., Liu, G., Schloerb, D.W., Srinivasan, M.A.: Viscoelastic characterization of the primate finger pad in vivo by microstep indentation and three-dimensional finite element models for tactile sensation studies. J. Biomech. Eng. 137, 6 (2015)CrossRefGoogle Scholar
  21. 21.
    Fertis, D.G.: Mechanical and Structural Vibration. Wiley, New York (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria Laura D’Angelo
    • 1
  • Darwin G. Caldwell
    • 1
  • Ferdinando Cannella
    • 1
  1. 1.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenoaItaly

Personalised recommendations