Advertisement

Weight and Weightlessness Effects on Sensorimotor Performance During Manual Tracking

  • Bernhard Weber
  • Simon Schätzle
  • Cornelia Riecke
  • Bernhard Brunner
  • Sergey Tarassenko
  • Jordi Artigas
  • Ribin Balachandran
  • Alin Albu-Schäffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9774)

Abstract

The effects of extra arm weight and weightlessness on sensorimotor performance were investigated in three studies. In all studies, subjects performed two-dimensional tracking tasks with a joystick. Results indicated that extra arm weight did not decrease tracking performance, but decreased acceleration variance. In weightlessness, tracking performance decreased and the control of movement impulses was deteriorated. This result pattern was found during water immersion as well as during spaceflight. The sensorimotor performance losses in weightlessness could be compensated by providing additional haptic cues with the input device.

Keywords

Sensorimotor performance Weightlessness Water immersion Microgravity Haptic feedback 

Notes

Acknowledgements

We want to express our gratitude to Prof. Stefan Schneider, Vanja Zander and Sebastian Dern from the German Sport University in Cologne as well as Jonas Schäffler and Henning Mende from the German Aerospace Center for their excellent support during the underwater study.

References

  1. 1.
    Lackner, J.R., DiZio, P.: Human orientation and movement control in weightless and artificial gravity environments. Exp. Brain Res. 130, 2–26 (2000)CrossRefGoogle Scholar
  2. 2.
    Mierau, A., Girgenrath, M., Bock, O.: Isometric force production during changed Gz episodes of parabolic flight. Eur. J. Appl. Physiol. 102(3), 313–318 (2008)CrossRefGoogle Scholar
  3. 3.
    Dalecki, M., Dräger, T., Mireau, A., Bock, O.: Production of finely graded forces in humans: effects of simulated weightlessness by water immersion. Exp. Brain Res. 218, 41–47 (2012)CrossRefGoogle Scholar
  4. 4.
    Crevecoeur, F., McIntyre, J., Thonnard, J.L., Lefèvre, P.: Movement stability under uncertain internal models of dynamics. J. Neurophysiol. 104, 1301–1313 (2010)CrossRefGoogle Scholar
  5. 5.
    Bock, O., Abeele, S., Eversheim, U.: Sensorimotor performance and computational demand during short-term exposure to microgravity. Aviat. Space Environ. Med. 74(12), 1256–1262 (2003)Google Scholar
  6. 6.
    Manzey, D., Lorenz, B., Heuer, H., Sangals, J.: Impairments of manual tracking performance during spaceflight: more converging evidence from a 20-day space mission. Ergonomics 43(5), 589–609 (2000)CrossRefGoogle Scholar
  7. 7.
    Jones, L.A., Hunter, I.W.: Human operator perception of mechanical variables and their effects on tracking performance. Proc. ASME Winter Annu. Meet. Adv. Robot. 42, 49–53 (1992)Google Scholar
  8. 8.
    Bock, O., Arnold, K.E., Cheung, B.S.: Performance of a simple aiming task in hypergravity: I. overall accuracy. Aviat. Space Environ. Med. 67(2), 127–132 (1996)Google Scholar
  9. 9.
    Howland, D., Noble, M.E.: The effect of physical constants of a control on tracking performance. J. Exp. Psychol. 46(5), 353 (1953)CrossRefGoogle Scholar
  10. 10.
    Jones, L.A., Hunter, I.W.: Influence of the mechanical properties of a manipulandum on human operator dynamics. Biol. Cybern. 62(4), 299–307 (1990)CrossRefGoogle Scholar
  11. 11.
    Jones, L.A., Hunter, I.W.: Influence of the mechanical properties of a manipulandum on human operator dynamics. II. Viscosity. Biol. Cybern. 69(4), 295–303 (1993)CrossRefGoogle Scholar
  12. 12.
    Heuer, H., Manzey, D., Lorenz, B., Sangals, J.: Impairments of manual tracking performance during spaceflight are associated with specific effects of microgravity on visuomotor transformations. Ergonomics 46, 920–934 (2003)CrossRefGoogle Scholar
  13. 13.
    Patrick, N., Kosmo, J., Locke, J., Trevino, L., Trevino, R.: Extravehicular activity operations and advancements. Wings Orbit Sci. Eng. Legacies Space Shuttle 2010, 110–129 (1971)Google Scholar
  14. 14.
    Riecke, C., Artigas, J. Balachandran, R., Bayer, R., Beyer, A., Brunner, B., Buchner, H., Gumpert, T., Gruber, R., Hacker, F., Landzettel, K., Plank, G., Schätzle, S., Sedlmayr, H.-J., Seitz, N., Steinmetz, B.-M., Stelzer, M., Vogel, J., Weber, B., Willberg, B., Albu-Schäffer, A.: KONTUR-2 mission: the DLR force feedback joystick for space telemanipulation from the ISS. In: Proceedings of i-SAIRAS 2016, Peking, China (2016)Google Scholar
  15. 15.
    Jürgens, H.W.: Körperteilgewichte des lebenden Menschen: Ergonomische Studien Nr. 13. Bundesamt für Wehrtechnik u. Beschaffung (1985)Google Scholar
  16. 16.
    Hirzinger, G., Landzettel, K., Reintsema, D., Preusche, C., Albu-Schäffer, A., Rebele, B., Turk, M.: Rokviss-robotics component verification on ISS. In: Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS) (2005)Google Scholar
  17. 17.
    Artigas, J., Balachandran, R., Riecke, C., Stelzer, M., Weber, B., Ryu, J.-H, Albu-Schäffer, A.: KONTUR-2: force-feedback teleoperation from the international space station. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden (2016, in press)Google Scholar
  18. 18.
    Sangals, J., Heuer, H., Manzey, D., Lorenz, B.: Changed visuomotor transformations during and after prolonged microgravity. Exp. Brain Res. 129, 378–390 (1999)CrossRefGoogle Scholar
  19. 19.
    Dalecki, M.: Human fine motor control and cognitive performance in simulated weightlessness by water immersion (Doctoral dissertation, German Sport University Cologne) (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bernhard Weber
    • 1
  • Simon Schätzle
    • 1
  • Cornelia Riecke
    • 1
  • Bernhard Brunner
    • 1
  • Sergey Tarassenko
    • 1
  • Jordi Artigas
    • 1
  • Ribin Balachandran
    • 1
  • Alin Albu-Schäffer
    • 1
  1. 1.German Aerospace CenterOberpfaffenhofenGermany

Personalised recommendations