Advertisement

Belowground Defence Strategies Against Sedentary Nematodes

  • Marta Barcala
  • Javier Cabrera
  • Carmen Fenoll
  • Carolina Escobar
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM)

Abstract

Plant parasitic nematodes (PPN) represent a major threat to agriculture as they produce high economic losses. Among them, the sedentary endoparasites (root-knot nematodes, RKNs, and cyst nematodes) complete their life cycle inside the host roots where they induce a special feeding site for nutrient uptake, namely, giant cells for RKNs and syncytia for cyst nematodes. The root system represents the first physical barrier for nematode penetration. Cell wall hardening strategies used against many pathogens are not very effective against them, as they use a robust stylet during penetration or migration to apply mechanical force and/or to secrete a mixture of cell wall degrading enzymes from the subventral esophageal glands. Plant defences against endoparasitic nematodes include mechanisms as pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), the last one leading to the hypersensitive response. The development of sensitive “omics” techniques, sometimes combined with feeding cell isolation, allowed global analysis of gene expression during this interaction. Hence, transcriptional changes associated to compatible and incompatible interactions of different plant species such as Arabidopsis, soybean, tomato, Medicago, etc. with different species of either cyst or RKN nematodes brought up a vast amount of genes induced or repressed during both interactions. Some of them will be useful for future applications on nematode control, as functional studies indicated their role in nematode resistance. Information on the molecular effectors used by nematodes during the cross talk with susceptible or resistant plants leading to plant defence responses is continuously increasing. Furthermore, in the recent years, some effectors that suppress plant defences were described, increasing the complexity of this particular plant–pathogen interaction.

Keywords

Cyst Nematode Plant Parasitic Nematode Incompatible Interaction Compatible Interaction Soybean Cyst Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Spanish Government (grant AGL2013-48787 to C. Escobar, and CSD2007-057 and PCIN-2013-053 to C. Fenoll) and by the Castilla-la Mancha Government (PEII-2014-020-P to CF). Javier Cabrera was supported by a fellowship from the Ministry of Education, Spain.

References

  1. Aditya J, Lewis J, Shirley NJ, Tan H-T, Henderson M, Fincher GB, Burton RA, Mather DE, Tucker MR (2015) The dynamics of cereal cyst nematode infection differ between susceptible and resistant barley cultivars and lead to changes in (1,3;1,4)-beta-glucan levels and HvCslF gene transcript abundance. New Phytol 207(1):135–147PubMedCrossRefGoogle Scholar
  2. Afzal AJ, Srour A, Goil A, Vasudaven S, Liu T, Samudrala R, Dogra N, Kohli P, Malakar A, Lightfoot DA (2013) Homo-dimerization and ligand binding by the leucine-rich repeat domain at RHG1/RFS2 underlying resistance to two soybean pathogens. BMC Plant Biol 13:43PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albert M (2013) Peptides as triggers of plant defence. J Exp Bot 64(17):5269–5279PubMedCrossRefGoogle Scholar
  4. Ali MA, Abbas A, Kreil DP, Bohlmann H (2013) Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots. BMC Plant Biol 13:47PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali MA, Wieczorek K, Kreil DP, Bohlmann H (2014) The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLoS One 9(7):e102360PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alkharouf NW, Matthews BF (2004) SGMD: the soybean genomics and microarray database. Nucleic Acids Res 32:D398–D400PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alkharouf NW, Klink VP, Chouikha IB, Beard HS, MacDonald MH, Meyer S, Knap HT, Khan R, Matthews BF (2006) Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode). Planta 224(4):838–852PubMedCrossRefGoogle Scholar
  8. Ammiraju JS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106(3):478–484PubMedCrossRefGoogle Scholar
  9. Atamian HS, Eulgem T, Kaloshian I (2012) SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235(2):299–309PubMedCrossRefGoogle Scholar
  10. Bagnaresi P, Sala T, Irdani T, Scotto C, Lamontanara A, Beretta M, Rotino GL, Sestili S, Cattivelli L, Sabatini E (2013) Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics 14:540PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barcala M, Garcia A, Cabrera J, Casson S, Lindsey K, Favery B, Garcia-Casado G, Solano R, Fenoll C, Escobar C (2010) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J 61(4):698–712PubMedCrossRefGoogle Scholar
  12. Bekal S, Niblack TL, Lambert KN (2003) A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Mol Plant Microbe Interact 16(5):439–446PubMedCrossRefGoogle Scholar
  13. Beneventi MA, da Silva OB, Jr., de Sa ME, Firmino AA, de Amorim RM, Albuquerque EV, da Silva MC, da Silva JP, Campos Mde A, Lopes MJ, Togawa RC, Pappas GJ, Jr., Grossi-de-Sa MF (2013) Transcription profile of soybean-root-knot nematode interaction reveals a key role of phytohormones in the resistance reaction. BMC Genomics 14:322Google Scholar
  14. Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol 144(1):312–323PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bhattarai KK, Xie QG, Mantelin S, Bishnoi U, Girke T, Navarre DA, Kaloshian I (2008) Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Mol Plant Microbe Interact 21(9):1205–1214PubMedCrossRefGoogle Scholar
  16. Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R-gene Mi-1. Plant J 63(2):229–240PubMedCrossRefGoogle Scholar
  17. Bird D, Opperman C, Williamson V (2009) Plant infection by root-knot nematode. In: Berg RH, Taylor C (eds) Plant cell monographs, vol 15. Springer, Berlin, pp 1–13Google Scholar
  18. Bogdanove A (2002) Protein-protein interactions in pathogen recognition by plants. Plant Mol Biol 50(6):981–989PubMedCrossRefGoogle Scholar
  19. Bohlmann H, Sobczak M (2014) The plant cell wall in the feeding sites of cyst nematodes. Front Plant Sci 5:89PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brown CR, Mojtahedi H, Santo GS, Williamson VM (1997) Effect of the Mi gene in tomato on reproductive factors of Meloidogyne chitwoodi and M. hapla. J Nematol 29(3):416–419PubMedPubMedCentralGoogle Scholar
  21. Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EM, Lange W, Stiekema WJ, Wyss U, Grundler FM, Jung C, Jacobsen E (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275(5301):832–834PubMedCrossRefGoogle Scholar
  22. Caldwell B, Brim C, Ross J (1960) Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines. Agron J 52:635–636CrossRefGoogle Scholar
  23. Callahan FE, Jenkins JN, Creech RG, Lawrence GW (1997) Changes in cotton root proteins correlated with resistance to root knot nematode development. J Cotton Sci 1:38–47Google Scholar
  24. Callahan FE, Zhang XD, Ma DP, Jenkins JN, Tucker ML (2004) Comparison of MIC-3 protein accumulation in response to root-knot nematode infection in cotton lines displaying a range of resistance levels. J Cotton Sci 8:186–190Google Scholar
  25. Caromel B, Gebhardt C (2011) Breeding for nematode resistance: use of genomic information. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 465–492CrossRefGoogle Scholar
  26. Chronis D, Chen S, Lu S, Hewezi T, Carpenter SC, Loria R, Baum TJ, Wang X (2013) A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J 74(2):185–196PubMedCrossRefGoogle Scholar
  27. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109(6):1318–1327PubMedCrossRefGoogle Scholar
  28. Claverie M, Dirlewanger E, Bosselut N, Van Ghelder C, Voisin R, Kleinhentz M, Lafargue B, Abad P, Rosso MN, Chalhoub B, Esmenjaud D (2011) The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region. Plant Physiol 156(2):779–792PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science (New York, NY) 338(6111):1206–1209CrossRefGoogle Scholar
  30. Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Hérouart D (2012) Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytol 194(2):511–522PubMedCrossRefGoogle Scholar
  31. Das S, Ehlers JD, Close TJ, Roberts PA (2010) Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array. BMC Genomics 11:480PubMedPubMedCentralCrossRefGoogle Scholar
  32. Davis E, Haegeman A, Kikuchi T (2011) Degradation of the plant cell wall by nematodes. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 255–272CrossRefGoogle Scholar
  33. de Almeida Engler J, Vieira P, Rodiuc N, de Sa MF G, Engler G (2015) The plant cell cycle machinery: usurped and modulated by plant parasitic nematodes. In: Escobar C, Fenoll C (eds) Plant nematode interactions. A view on compatible interrelationships, vol 73, Advances in botanical research. Elsevier, Oxford, UK, pp 91–118CrossRefGoogle Scholar
  34. de Sá ME, Conceição Lopes MJ, de Araujo Campos M, Paiva LV, Dos Santos RM, Beneventi MA, Firmino AA, de Sá MF (2012) Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica. Genet Mol Biol 35(1(suppl)): 272–282Google Scholar
  35. Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubèze A, Palloix A, Dalmasso A, Abad P (1999) Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.). Theor Appl Genet 99(3-4):496–502PubMedCrossRefGoogle Scholar
  36. Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theor Appl Genet 103(4):592–600CrossRefGoogle Scholar
  37. Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114(3):473–486PubMedCrossRefGoogle Scholar
  38. Doyle EA, Lambert KN (2003) Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol Plant Microbe Interact 16(2):123–131PubMedCrossRefGoogle Scholar
  39. Dropkin V (1969) The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59:1632–1637Google Scholar
  40. Dubreuil G, Magliano M, Dubrana MP, Lozano J, Lecomte P, Favery B, Abad P, Rosso MN (2009) Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. J Exp Bot 60(14):4041–4050PubMedCrossRefGoogle Scholar
  41. Ernst K, Kumar A, Kriseleit D, Kloos D-U, Phillips MS, Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31(2):127–136PubMedCrossRefGoogle Scholar
  42. Escobar C, Brown S, Mitchum M (2011) Transcriptomic and proteomic analysis of the plant response to nematode infection. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 157–173CrossRefGoogle Scholar
  43. Escobar C, Barcala M, Cabrera J, Fenoll C (2015) Overview of root-knot nematodes and giant cells. In: Escobar C, Fenoll C (eds) Plant nematode interactions. A view on compatible interrelationships, vol 73, Advances in botanical research. Elsevier, Oxford, UK, pp 1–32CrossRefGoogle Scholar
  44. Esmenjaud D, Minot J, Voisin R, Pinochet J, Salesses G (1994) Inter- and intraspecific resistance variability in Myrobalan plum, peach and peach almond rootstocks using 22 root-knot nematode populations. J Am Soc Hortic Sci 119:94–100Google Scholar
  45. Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996) Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theor Appl Genet 92(7):873–879PubMedCrossRefGoogle Scholar
  46. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371PubMedCrossRefGoogle Scholar
  47. Fosu-Nyarko J, Jones MGK (2015) Application of biotechnology for nematode control in crop plants. In: Escobar C, Fenoll C (eds) Plant nematode interactions. A view on compatible interrelationships, vol 73, Advances in botanical research. Elsevier, Oxford, UK, pp 339–376CrossRefGoogle Scholar
  48. Franco OL, Pereira J, Costa PHA, Rocha TL, Albuquerque EVS, Grossi-de-Sa MF, Carneiro RMDG, Carneiro RG, Mehta A (2010) Methodological evaluation of 2-DE to study root proteomics during nematode infection in cotton and coffee plants. Prep Biochem Biotechnol 40(2):152–163PubMedCrossRefGoogle Scholar
  49. Gao X, Starr J, Gobel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M (2008) Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol Plant Microbe Interact 21(1):98–109PubMedCrossRefGoogle Scholar
  50. Gardner M, Verma A, Mitchum MG (2015) Emerging roles of cyst nematode effectors in exploiting plant cellular processes. In: Escobar C, Fenoll C (eds) Plant nematode interactions: a view on compatible interrelationships, vol 73, Advances in botanical research. Elsevier, Oxford, UK, pp 259–292CrossRefGoogle Scholar
  51. Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146(1):381–392PubMedPubMedCentralGoogle Scholar
  52. Gleason CA, Liu QL, Williamson VM (2008) Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence. MPMI 21(5):576–585PubMedCrossRefGoogle Scholar
  53. Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60(1):425–449PubMedCrossRefGoogle Scholar
  54. Hamamouch N, Li C, Hewezi T, Baum TJ, Mitchum MG, Hussey RS, Vodkin LO, Davis EL (2012) The interaction of the novel 30C02 cyst nematode effector protein with a plant beta-1,3-endoglucanase may suppress host defence to promote parasitism. J Exp Bot 63(10):3683–3695PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14(2):177–193PubMedCrossRefGoogle Scholar
  56. Hare WW (1957) Inheritance of resistance to root-knot nematodes in pepper. Phytopathology 47:455–459Google Scholar
  57. Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ (2010) Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol 152(2):968–984PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22(2):115–122PubMedCrossRefGoogle Scholar
  59. Hosseini P, Matthews BF (2014) Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction. BMC Plant Biol 14:300PubMedPubMedCentralCrossRefGoogle Scholar
  60. Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2005) Two chorismate mutase genes from the root-knot nematode Meloidogyne incognita. Mol Plant Pathol 6(1):23–30PubMedCrossRefGoogle Scholar
  61. Hussey RS, Davis EL (2004) Nematode esophageal glands and plant parasitism. In: Chen ZX, Chen SYA, Dickson DW (eds) Nematology advances and perspectives, volume I. Nematode morphology, physiology and ecology. CABI, Beijing, pp 258–293Google Scholar
  62. Iberkleid I, Vieira P, de Almeida Engler J, Firester K, Spiegel Y, Horowitz SB (2013) Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS One 8(5):e64586PubMedPubMedCentralCrossRefGoogle Scholar
  63. Iberkleid I, Ozalvo R, Feldman L, Elbaz M, Patricia B, Horowitz SB (2014) Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel. Phytopathology 104(5):484–496PubMedCrossRefGoogle Scholar
  64. Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG (2007a) Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol Plant Microbe Interact 20(3):293–305PubMedCrossRefGoogle Scholar
  65. Ithal N, Recknor J, Nettleton D, Maier T, Baum TJ, Mitchum MG (2007b) Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol Plant Microbe Interact 20(5):510–525PubMedCrossRefGoogle Scholar
  66. Jablonska B, Ammiraju JS, Bhattarai KK, Mantelin S, Martinez de Ilarduya O, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143(2):1044–1054PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jaouannet M, Magliano M, Arguel MJ, Gourgues M, Evangelisti E, Abad P, Rosso MN (2012) The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Mol Plant Microbe Interact 26(1):97–105CrossRefGoogle Scholar
  68. Jaubert S, Laffaire JB, Abad P, Rosso MN (2002) A polygalacturonase of animal origin isolated from the root-knot nematode Meloidogyne incognita. FEBS Lett 522(1-3):109–112PubMedCrossRefGoogle Scholar
  69. Jaubert S, Milac AL, Petrescu AJ, de Almeida-Engler J, Abad P, Rosso MN (2005) In planta secretion of a calreticulin by migratory and sedentary stages of root-knot nematode. Mol Plant Microbe Interact 18(12):1277–1284PubMedCrossRefGoogle Scholar
  70. Ji H, Gheysen G, Denil S, Lindsey K, Topping JF, Nahar K, Haegeman A, De Vos WH, Trooskens G, Van Criekinge W, De Meyer T, Kyndt T (2013) Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. J Exp Bot 64(12):3885–3898PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ji H, Gheysen G, Ullah C, Verbeek R, Shang C, De Vleesschauwer D, Hofte M, Kyndt T (2015) The role of thionins in rice defence against root pathogens. Mol Plant Pathol 16(8):870–881PubMedCrossRefGoogle Scholar
  72. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedCrossRefGoogle Scholar
  73. Jones JT, Furlanetto C, Bakker E, Banks B, Blok V, Chen Q, Phillips M, Prior A (2003) Characterization of chorismate mutase from potato cyst nematode Globodera pallida. Mol Plant Pathol 4(1):43–50PubMedCrossRefGoogle Scholar
  74. Jones JT, Reavy B, Smant G, Prior AE (2004) Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis. Gene 324:47–54PubMedCrossRefGoogle Scholar
  75. Kaloshian I, Desmond O, Atamian H (2011) Disease resistance-genes and defense responses during incompatible interactions. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 309–324CrossRefGoogle Scholar
  76. Kammerhofer N, Radakovic Z, Regis JM, Dobrev P, Vankova R, Grundler FM, Siddique S, Hofmann J, Wieczorek K (2015) Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytol 207(3):778–789PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44(4):41–60PubMedCrossRefGoogle Scholar
  78. Kandoth PK, Ithal N, Recknor J, Maier T, Nettleton D, Baum TJ, Mitchum MG (2011) The soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells. Plant Physiol 155(4):1960–1975PubMedPubMedCentralCrossRefGoogle Scholar
  79. Khan RF, Alkharouf N, Beard H, Macdonald M, Chouikha I, Meyer S, Grefenstette J, Knap H, Matthews B (2004) Microarray analysis of gene expression in soybean roots susceptible to the soybean cyst nematode two days post invasion. J Nematol 36(3):241–248PubMedPubMedCentralGoogle Scholar
  80. Kiewnick S, Dessimoz M, Franck L (2009) Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. J Nematol 41(2):134–139PubMedPubMedCentralGoogle Scholar
  81. Klink VP, Matthews BF (2009) Emerging approaches to broaden resistance of soybean to soybean cyst nematode as supported by gene expression studies. Plant Physiol 151(3):1017–1022PubMedPubMedCentralCrossRefGoogle Scholar
  82. Klink V, Alkharouf N, MacDonald M, Matthews B (2005) Laser capture microdissection (LCM) and expression analyses of Glycine max (Soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol 59(6):965–979PubMedCrossRefGoogle Scholar
  83. Klink V, Overall C, Alkharouf N, MacDonald M, Matthews B (2007a) A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta 226(6):1423–1447PubMedCrossRefGoogle Scholar
  84. Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF (2007b) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 226(6):1389–1409PubMedCrossRefGoogle Scholar
  85. Klink VP, Hosseini P, MacDonald MH, Alkharouf NW, Matthews BF (2009a) Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics 10:111PubMedPubMedCentralCrossRefGoogle Scholar
  86. Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF (2009b) A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Plant Mol Biol 71(6):525–567PubMedCrossRefGoogle Scholar
  87. Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF (2010a) Syncytium gene expression in Glycine max ([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiol Biochem 48(2-3):176–193PubMedCrossRefGoogle Scholar
  88. Klink VP, Overall CC, Alkharouf NW, Macdonald MH, Matthews BF (2010b) Microarray detection call methodology as a means to identify and compare transcripts expressed within syncytial cells from soybean (Glycine max) roots undergoing resistant and susceptible reactions to the soybean cyst nematode (Heterodera glycines). J Biomed Biotechnol 2010:491217PubMedPubMedCentralCrossRefGoogle Scholar
  89. Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF (2011) Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. Plant Mol Biol 75(1-2):141–165PubMedCrossRefGoogle Scholar
  90. Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JDG (2002) A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296(5568):744–747PubMedCrossRefGoogle Scholar
  91. Kyndt T, Denil S, Haegeman A, Trooskens G, Bauters L, Van Criekinge W, De Meyer T, Gheysen G (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196(3):887–900PubMedCrossRefGoogle Scholar
  92. Lambert KN, Ferrie BJ, Nombela G, Brenner ED, Williamson VM (1999) Identification of genes whose transcripts accumulate rapidly in tomato after root-knot nematode infection. Physiol Mol Plant Pathol 55(6):341–348CrossRefGoogle Scholar
  93. Lambert K, Bekal S (2002) Introduction to plant-parasitic nematodes. Plant Health Instructor. doi: 10.1094/PHI-I-2002-1218-01 Google Scholar
  94. Lecouls A, Salesses G, Minot J, Voisin R, Bonnet A, Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 95:1325–1334CrossRefGoogle Scholar
  95. Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492(7428):256–260PubMedGoogle Scholar
  96. Lopes-Caitar VS, de Carvalho MC, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimaraes FC (2013) Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 14:577PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lozano J, Smant G (2011) Survival of plant-parasitic nematodes inside the host. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. CABI, Wallingford, pp 66–85Google Scholar
  98. Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers-Tomczak A, Cordewener JHG, America AHP, Overmars HA, Van’t Klooster JW, Baranowski L, Sobczak M, Ilyas M, van der Hoorn RAL, Schots A, de Wit PJGM, Bakker J, Goverse A, Smant G (2012) Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc Natl Acad Sci USA 109(25):10119–10124PubMedPubMedCentralCrossRefGoogle Scholar
  99. Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272PubMedCrossRefGoogle Scholar
  100. Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:Article 178PubMedCrossRefGoogle Scholar
  101. Manosalva P, Manohar M, von Reuss SH, Chen S, Koch A, Kaplan F, Choe A, Micikas RJ, Wang X, Kogel KH, Sternberg PW, Williamson VM, Schroeder FC, Klessig DF (2015) Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 6:7795PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mantelin S, Bhattarai KK, Jhaveri TZ, Kaloshian I (2013) Mi-1 mediated resistance to Meloidogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host. PLoS One 8(5):e63281PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mantelin S, Thorpe P, Jones JT (2015) Suppression of plant defences by plant-parasitic nematodes. In: Escobar C, Fenoll C (eds) Plant nematode interactions. A view on compatible interrelationships, vol 73, Advances in botanical research. Elsevier, Oxford, UK, pp 325–338CrossRefGoogle Scholar
  104. Martinez de Ilarduya O, Moore AE, Kaloshian I (2001) The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. Plant J 27(5):417–425CrossRefGoogle Scholar
  105. Martinez de Ilarduya O, Nombela G, Hwang CF, Williamson VM, Muniz M, Kaloshian I (2004) Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway. Mol Plant Microbe Interact 17(1):55–61PubMedCrossRefGoogle Scholar
  106. Matsye PD, Kumar R, Hosseini P, Jones CM, Tremblay A, Alkharouf NW, Matthews BF, Klink VP (2011) Mapping cell fate decisions that occur during soybean defense responses. Plant Mol Biol 77(4-5):513–528PubMedCrossRefGoogle Scholar
  107. Matsye PD, Lawrence GW, Youssef RM, Kim K-H, Lawrence KS, Matthews BF, Klink VP (2012) The expression of a naturally occurring, truncated allele of an alpha-SNAP gene suppresses plant parasitic nematode infection. Plant Mol Biol 80(2):131–155PubMedCrossRefGoogle Scholar
  108. Matthews BF, Beard H, MacDonald MH, Kabir S, Youssef RM, Hosseini P, Brewer E (2013) Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta 237(5):1337–1357PubMedPubMedCentralCrossRefGoogle Scholar
  109. Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM (2014) Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC Plant Biol 14:96PubMedPubMedCentralCrossRefGoogle Scholar
  110. Mazarei M, Liu W, Al-Ahmad H, Arelli PR, Pantalone VR, Stewart CN Jr (2011) Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theor Appl Genet 123(7):1193–1206PubMedCrossRefGoogle Scholar
  111. Melito S, Heuberger AL, Cook D, Diers BW, MacGuidwin AE, Bent AF (2010) A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biol 10:104PubMedPubMedCentralCrossRefGoogle Scholar
  112. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10(8):1307–1319PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL (2013) Nematode effector proteins: an emerging paradigm of parasitism. New Phytol 199:879–894PubMedCrossRefGoogle Scholar
  114. Molinari S, Fanelli E, Leonetti P (2014) Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Mol Plant Pathol 15(3):255–264PubMedCrossRefGoogle Scholar
  115. Nombela G, Williamson VM, Muñiz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16(7):645–649PubMedCrossRefGoogle Scholar
  116. Oliveira JTA, Andrade NC, Martins-Miranda AS, Soares AA, Gondim DMF, Araújo-Filho JH, Freire-Filho FR, Vasconcelos IM (2012) Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiol Biochem 51:145–152PubMedCrossRefGoogle Scholar
  117. Ozalvo R, Cabrera J, Escobar C, Christensen SA, Borrego EJ, Kolomiets MV, Castresana C, Iberkleid I, Brown Horowitz S (2014) Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection. Mol Plant Pathol 15(4):319–332PubMedCrossRefGoogle Scholar
  118. Paal J, Fau HH, Jost M, Meksem K, Menendez CM, Salamini F, Ballvora A, Gebhardt C (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38(2):285–297PubMedCrossRefGoogle Scholar
  119. Patel N, Hamamouch N, Li C, Hewezi T, Hussey RS, Baum TJ, Mitchum MG, Davis EL (2010) A nematode effector protein similar to annexins in host plants. J Exp Bot 61(1):235–248PubMedCrossRefGoogle Scholar
  120. Perry R, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 3–20CrossRefGoogle Scholar
  121. Portillo M, Cabrera J, Lindsey K, Topping J, Andres MF, Emiliozzi M, Oliveros JC, Garcia-Casado G, Solano R, Koltai H, Resnick N, Fenoll C, Escobar C (2013) Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytol 197(4):1276–1290PubMedCrossRefGoogle Scholar
  122. Postma WJ, Slootweg EJ, Rehman S, Finkers-Tomczak A, Tytgat TO, van Gelderen K, Lozano-Torres JL, Roosien J, Pomp R, van Schaik C, Bakker J, Goverse A, Smant G (2012) The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiol 160(2):944–954PubMedPubMedCentralCrossRefGoogle Scholar
  123. Postnikova OA, Hult M, Shao J, Skantar A, Nemchinov LG (2015) Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS One 10(2):e0118269PubMedPubMedCentralCrossRefGoogle Scholar
  124. Potenza C, Thomas S, Higgins E, Sengupta-Gopalan C (1996) Early root response to Meloidogyne incognita in resistant and susceptible alfalfa cultivars. J Nematol 28:475–484PubMedPubMedCentralGoogle Scholar
  125. Prior A, Jones JT, Blok VC, Beauchamp J, McDermott L, Cooper A, Kennedy MW (2001) A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochem J 356(Pt 2):387–394PubMedPubMedCentralCrossRefGoogle Scholar
  126. Puthoff DP, Nettleton D, Rodermel SR, Baum TJ (2003) Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J 33(5):911–921PubMedCrossRefGoogle Scholar
  127. Puthoff DP, Ehrenfried ML, Vinyard BT, Tucker ML (2007) GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots. J Exp Bot 58(12):3407–3418PubMedCrossRefGoogle Scholar
  128. Robertson L, Robertson WM, Jones JT (1999) Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis. Parasitology 119(Pt 2):167–176PubMedCrossRefGoogle Scholar
  129. Robertson L, Robertson WM, Sobczak M, Helder J, Tetaud E, Ariyanayagam MR, Ferguson MAJ, Fairlamb A, Jones JT (2000) Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol 111(1):41–49PubMedCrossRefGoogle Scholar
  130. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95(17):9750–9754PubMedPubMedCentralCrossRefGoogle Scholar
  131. Rosso M-N, Grenier E (2011) Other nematode effectors and evolutionary constraints. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 287–307CrossRefGoogle Scholar
  132. Sacco MA, Koropacka K, Grenier E, Jaubert MJ, Blanchard A, Goverse A, Smant G, Moffett P (2009) The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathog 5(8):e1000564PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schaff JE, Nielsen DM, Smith CP, Scholl EH, Bird DM (2007) Comprehensive transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi-mediated nematode resistance. Plant Physiol 144(2):1079–1092PubMedPubMedCentralCrossRefGoogle Scholar
  134. Seah S, Yaghoobi J, Rossi M, Gleason C, Williamson V (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor Appl Genet 108:1635–1642PubMedCrossRefGoogle Scholar
  135. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26Google Scholar
  136. Simonetti E, Alba E, Montes MJ, Delibes A, Lopez-Brana I (2010) Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae. Plant Cell Rep 29(10):1169–1178PubMedCrossRefGoogle Scholar
  137. Smant G, Jones J (2011) Suppression of plant defences by nematodes. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 273–286CrossRefGoogle Scholar
  138. Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hortic Sci 44:413–416Google Scholar
  139. Sobczak M, Golinowski W (2011) Cyst nematodes and syncytia. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 61–82CrossRefGoogle Scholar
  140. Sobczak M, Avrova A, Jupowicz J, Phillips MS, Ernst K, Kumar A (2005) Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol Plant Microbe Interact 18(2):158–168PubMedCrossRefGoogle Scholar
  141. Starr JL, Yang W, Yan Y, Crutcher F, Kolomiets M (2014) Expression of phenylalanine ammonia lyase genes in maize lines differing in susceptibility to Meloidogyne incognita. J Nematol 46(4):360–364PubMedPubMedCentralGoogle Scholar
  142. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263PubMedCrossRefGoogle Scholar
  143. Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil DP, Sykacek P, Grundler FMW, Bohlmann H (2009) The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J 57(5):771–784PubMedCrossRefGoogle Scholar
  144. Tameling WIL, Nooijen C, Ludwig N, Boter M, Slootweg E, Goverse A, Shirasu K, Joosten MHAJ (2010) RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22(12):4176–4194PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tirumalaraju SV, Jain M, Gallo M (2011) Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. J Plant Physiol 168(5):481–492PubMedCrossRefGoogle Scholar
  146. Tomczak A, Koropacka K, Smant G, Goverse A, Bakker E (2009) Resistant plant responses. In: Berg RH, Taylor C (eds) Cell biology of plant nematode parasitism, vol 15, Plant cell monographs. Springer, Berlin, pp 83–113CrossRefGoogle Scholar
  147. Truong NM, Nguyen C-N, Abad P, Quentin M, Favery B (2015) Function of root knot nematode effectors and their targets in plant parasitism. In: Escobar C, Fenoll C (eds) Plant nematode interactions: a view on compatible interrelationships, vol 73, Advances in botanical research. Elsevier, Oxford, UK, pp 293–324CrossRefGoogle Scholar
  148. Uehara T, Sugiyama S, Masuta C (2007) Comparative serial analysis of gene expression of transcript profiles of tomato roots infected with cyst nematode. Plant Mol Biol 63(2):185–194PubMedCrossRefGoogle Scholar
  149. Uehara T, Sugiyama S, Matsuura H, Arie T, Masuta C (2010) Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid. Plant Cell Physiol 51(9):1524–1536PubMedCrossRefGoogle Scholar
  150. Van Damme M, Huibers RP, Elberse J, Van den Ackerveken G (2008) Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J 54(5):785–793PubMedCrossRefGoogle Scholar
  151. van der Voort JR, Wolters P, Folkertsma R, Hutten R, van Zandvoort P, Vinke H, Kanyuka K, Bendahmane A, Jacobsen E, Janssen R, Bakker J (1997) Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet 95(5-6):874–880CrossRefGoogle Scholar
  152. van der Vossen EA, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23(5):567–576PubMedCrossRefGoogle Scholar
  153. Vanholme B, Kast P, Haegeman A, Jacob J, Grunewald WIM, Gheysen G (2009) Structural and functional investigation of a secreted chorismate mutase from the plant-parasitic nematode Heterodera schachtii in the context of related enzymes from diverse origins. Mol Plant Pathol 10(2):189–200PubMedCrossRefGoogle Scholar
  154. Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98(2):274–280CrossRefGoogle Scholar
  155. Veronico P, Giannino D, Melillo MT, Leone A, Reyes A, Kennedy MW, Bleve-Zacheo T (2006) A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiol 141(3):1045–1055PubMedPubMedCentralCrossRefGoogle Scholar
  156. Villeth GR, Carmo LS, Silva LP, Fontes W, Grynberg P, Saraiva M, Brasileiro AC, Carneiro RM, Oliveira JT, Grossi-de-Sa MF, Mehta A (2015) Cowpea-Meloidogyne incognita interaction: root proteomic analysis during early stages of nematode infection. Proteomics 15(10):1746–1759PubMedCrossRefGoogle Scholar
  157. Wan J, Vuong T, Jiao Y, Joshi T, Zhang H, Xu D, Nguyen HT (2015) Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe). BMC Genomics 16:148PubMedPubMedCentralCrossRefGoogle Scholar
  158. Watts V (1947) The use of Lycopersicon peruvianum as a source of nematode resistance in tomatoes. Proc Am Soc Hortic Sci 49:233Google Scholar
  159. Williamson VM, Roberts PA (2009) Mechanisms and genetics of resistance. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford, pp 301–325CrossRefGoogle Scholar
  160. Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87(7):757–763PubMedCrossRefGoogle Scholar
  161. Wubben MJ, Callahan FE, Hayes RW, Jenkins JN (2008) Molecular characterization and temporal expression analyses indicate that the MIC (Meloidogyne Induced Cotton) gene family represents a novel group of root-specific defense-related genes in upland cotton (Gossypium hirsutum L.). Planta 228(1):111–123PubMedCrossRefGoogle Scholar
  162. Wubben M, Callahan F, Velten J, Burke J, Jenkins J (2015) Overexpression of MIC-3 indicates a direct role for the MIC gene family in mediating upland cotton (Gossypium hirsutum) resistance to root-knot nematode (Meloidogyne incognita). Theor Appl Genet 128(2):199–209PubMedCrossRefGoogle Scholar
  163. Wyss U, Zunke U (1986) Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Revue Nématol 9(2):153–165Google Scholar
  164. Wyss U, Grundler FM, Münch A (1992) The parasitic behaviour of second-stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica 38:98–111CrossRefGoogle Scholar
  165. Youssef RM, MacDonald MH, Brewer EP, Bauchan GR, Kim KH, Matthews BF (2013) Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes. BMC Plant Biol 13:67PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhang Z-Q (2013) Animal biodiversity: an update of classification and diversity in 2013. Zootaxa 3703(1):5–11CrossRefGoogle Scholar
  167. Zhang X-D, Callahan FE, Jenkins JN, Ma D-P, Karaca M, Creech RG (2002) A novel root specific gene, MIC-3, with increased expression in nematode-resistant cotton (Gossypium hirsutum L.) after root-knot nematode infection. Biochem Biophys Acta 1576:214–218PubMedGoogle Scholar
  168. Zhou J, Jia F, Shao S, Zhang H, Li G, Xia X, Zhou Y, Yu J, Shi K (2015) Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. Front Plant Sci 6:193PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marta Barcala
    • 1
  • Javier Cabrera
    • 1
  • Carmen Fenoll
    • 1
  • Carolina Escobar
    • 1
  1. 1.Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla-La ManchaToledoSpain

Personalised recommendations