Advertisement

Nutritional-Based Nutraceuticals in the Treatment of Anxiety

  • David A. CamfieldEmail author
Chapter

Abstract

This chapter will present evidence from human clinical trials regarding the efficacy of nutritional supplements which have emerged in recent years as viable treatments for anxiety disorders.
  • B vitamins

  • Magnesium

  • Lysine and Arginine

  • Myo-Inositol

  • N-Acetyl-cysteine

Keywords

Generalize Anxiety Disorder Panic Disorder Clinical Global Impression Cortisol Awakening Response Premenstrual Symptom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kalra EK. Nutraceutical – definition and introduction. AAPS PharmSci. 2003;5(3).Google Scholar
  2. 2.
    Brower V. Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol. 1998;16(8):728–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Bor MV et al. Plasma vitamin B6 vitamers before and after oral vitamin B6 treatment: a randomized placebo-controlled study. Clin Chem. 2003;49(1):155–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Dainty JR et al. Quantification of the bioavailability of riboflavin from foods by use of stable-isotope labels and kinetic modeling. Am J Clin Nutr. 2007;85(6):1557–64.PubMedGoogle Scholar
  5. 5.
    Mönch S et al. Quantitation of folates and their catabolites in blood plasma, erythrocytes, and urine by stable isotope dilution assays. Anal Biochem. 2010;398(2):150–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Bottiglieri T. Homocysteine and folate metabolism in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(7):1103–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003;26(3):137–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Miller AL. The methionine-homocysteine cycle and its effects on cognitive diseases. Altern Med Rev. 2003;8(1):7–19.PubMedGoogle Scholar
  9. 9.
    Head KA, Kelly GS. Nutrients and botanicals for treatment of stress: adrenal fatigue, neurotransmitter imbalance, anxiety, and restless sleep. Altern Med Rev. 2009;14(2):114–40.PubMedGoogle Scholar
  10. 10.
    Rogaev EI et al. The upstream promoter of the Î2-amyloid precursor protein gene (APP) shows differential patterns of methylation in human brain. Genomics. 1994;22(2):340–7.PubMedCrossRefGoogle Scholar
  11. 11.
    West RL, Lee JM, Maroun LE. Hypomethylation of the amyloid precursor protein gene in the brain of an alzheimer’s disease patient. J Mol Neurosci. 1995;6(2):141–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Kruman II et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci. 2000;20(18):6920–6.PubMedGoogle Scholar
  13. 13.
    Dief AE, Samy DM, Dowedar FI. Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress. J Nutr Sci Vitaminol. 2015;61(1):1–7.CrossRefGoogle Scholar
  14. 14.
    Kennedy DO. B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients. 2016;8(2).Google Scholar
  15. 15.
    Camfield DA et al. The effects of multivitamin supplementation on diurnal cortisol secretion and perceived stress. Nutrients. 2013;5(11):4429–50.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Schlebusch L et al. A double-blind, placebo-controlled, double-centre study of the effects of an oral multivitamin-mineral combination on stress. S Afr Med J. 2000;90(12):1216–23.PubMedGoogle Scholar
  17. 17.
    Carroll D et al. The effects of an oral multivitamin combination with calcium, magnesium, and zinc on psychological well-being in healthy young male volunteers: A double-blind placebo-controlled trial. Psychopharmacology, 2000;150(2):220–225.Google Scholar
  18. 18.
    Stough C et al. The effect of 90 day administration of a high dose vitamin B-complex on work stress. Hum Psychopharmacol. 2011;26(7):470–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Harris E et al. Effects of a multivitamin, mineral and herbal supplement on cognition and blood biomarkers in older men: a randomised, placebo-controlled trial. Hum Psychopharmacol. 2012;27:370–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Macpherson H et al. Acute mood but not cognitive improvements following administration of a single multivitamin and mineral supplement in healthy women aged 50 and above: a randomised controlled trial. Age. 2015;37(3).Google Scholar
  21. 21.
    White DJ et al. Effects of four-week supplementation with a multi-vitamin/mineral preparation on mood and blood biomarkers in young adults: a randomised, double-blind, placebo-controlled trial. Nutrients. 2015;7(11):9005–17.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Haskell CF et al. Effects of a multi-vitamin/mineral supplement on cognitive function and fatigue during extended multi-tasking. Hum Psychopharmacol. 2010;25(6):448–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Kennedy DO et al. Improved cognitive performance and mental fatigue following a multi-vitamin and mineral supplement with added guaraná (Paullinia cupana). Appetite. 2008;50(2–3):506–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Kennedy DO et al. Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males. Psychopharmacology (Berl). 2010:1–14.Google Scholar
  25. 25.
    Pipingas A et al. The effects of multivitamin supplementation on mood and general well-being in healthy young adults. a laboratory and at-home mobile phone assessment. Appetite. 2013;69:123–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Long SJ, Benton D. Effects of vitamin and mineral supplementation on stress, mild psychiatric symptoms, and mood in nonclinical samples: a meta-analysis. Psychosom Med. 2013;75(2):144–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Alpert JE et al. Nutrition and depression: focus on folate. Nutrition. 2000;16(7–8):544–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Baldewicz TT et al. Cobalamin level is related to self-reported and clinically rated mood and to syndromal depression in bereaved HIV-1+ and HIV-1- homosexual men. J Psychosom Res. 2000;48(2):177–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Tolmunen T et al. Dietary folate and depressive symptoms are associated in middle-aged Finnish men. J Nutr. 2003;133(10):3233–6.PubMedGoogle Scholar
  30. 30.
    Tiemeier H et al. Vitamin B12, folate, and homocysteine in depression: the Rotterdam study. Am J Psychiatry. 2002;159(12):2099–101.PubMedCrossRefGoogle Scholar
  31. 31.
    Bjelland I et al. Folate, vitamin B12, homocysteine, and the MTHFR 677C → T polymorphism in anxiety and depression. the Hordaland Homocysteine Study. Arch Gen Psychiatry. 2003;60(6):618–26.PubMedCrossRefGoogle Scholar
  32. 32.
    Botez MI et al. Folate deficiency and decreased brain 5-hydroxytryptamine synthesis in man and rat [21]. Nature. 1979;278(5700):182–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Godfrey PSA et al. Enhancement of recovery from psychiatric illness by methylfolate. Lancet. 1990;336(8712):392–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Passen M et al. Oral 5′-methyltetrahydrofolic acid in senile organic mental disorders with depression: results of a double-blind multicenter study. Aging Clin Exp Res. 1993;5(1):63–71.CrossRefGoogle Scholar
  35. 35.
    Coppen A, Bailey J. Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. J Affect Disord. 2000;60(2):121–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Alpert JE et al. Folinic acid (leucovorin) as an adjunctive treatment for SSRI-refractory depression. Ann Clin Psychiatry. 2002;14(1):33–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Taylor MJ et al. Folate for depressive disorders: systematic review and meta-analysis of randomized controlled trials. J Psychopharmacol. 2004;18(2):251–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Coppen A, Bolander-Gouaille C. Treatment of depression: time to consider folic acid and vitamin B 12. J Psychopharmacol. 2005;19(1):59–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Rucklidge JJ et al. Shaken but unstirred? Effects of micronutrients on stress and trauma after an earthquake: RCT evidence comparing formulas and doses. Hum Psychopharmacol. 2012;27(5):440–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Rucklidge JJ et al. Psychological functioning 1 year after a brief intervention using micronutrients to treat stress and anxiety related to the 2011 Christchurch earthquakes: a naturalistic follow-up. Hum Psychopharmacol. 2014;29(3):230–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24(2):47–66.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ford ES, Mokdad AH. Dietary magnesium intake in a national sample of U.S. adults. J Nutr. 2003;133(9):2879–82.PubMedGoogle Scholar
  43. 43.
    Elin RJ. Magnesium metabolism in health and disease. Dis Mon. 1988;34(4):166–218.CrossRefGoogle Scholar
  44. 44.
    Mori H et al. Identification by mutagenesis of a Mg2+ − block site of the NMDA receptor channel. Nature. 1992;358(6388):673–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Decollogne S et al. NMDA receptor complex blockade by oral administration of magnesium: comparison with MK-801. Pharmacol Biochem Behav. 1997;58(1):261–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Poleszak E et al. Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav. 2004;78(1):7–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses. 2006;67(2):362–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Szewczyk B et al. Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol Rep. 2008;60(5):588–99.PubMedGoogle Scholar
  49. 49.
    Frizel D, Coppen A, Marks V. Plasma magnesium and calcium in depression. Br J Psychiatry. 1969;115(529):1375–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Wacker WE, Parisi AF. Magnesium metabolism. N Engl J Med. 1968;278(12):658–63.PubMedCrossRefGoogle Scholar
  51. 51.
    Eby Iii GA, Eby KL. Magnesium for treatment-resistant depression: a review and hypothesis. Med Hypotheses. 2010;74(4):649–60.CrossRefGoogle Scholar
  52. 52.
    Abraham GE. Nutritional factors in the etiology of the premenstrual tension syndromes. J Reprod Med. 1983;28(7):446–64.PubMedGoogle Scholar
  53. 53.
    De Souza MC et al. A synergistic effect of a daily supplement for 1 month of 200 mg magnesium plus 50 mg vitamin B6 for the relief of anxiety-related premenstrual symptoms: a randomized, double-blind, crossover study. J Womens Health Gend Based Med. 2000;9(2):131–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Walker AF et al. Magnesium supplementation alleviates premenstrual symptoms of fluid retention. J Womens Health. 1998;7(9):1157–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Hanus M, Lafon J, Mathieu M. Double-blind, randomised, placebo-controlled study to evaluate the efficacy and safety of a fixed combination containing two plant extracts (Crataegus oxyacantha and Eschscholtzia californica) and magnesium in mild-to-moderate anxiety disorders. Curr Med Res Opin. 2004;20(1):63–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Lakhan SE, Vieira KF. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J. 2010;9(1).Google Scholar
  57. 57.
    Nieves Jr C, Langkamp-Henken B. Arginine and immunity: a unique perspective. Biomed Pharmacother. 2002;56(10):471–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Smriga M, Torii K. L-Lysine acts like a partial serotonin receptor 4 antagonist and inhibits serotonin-mediated intestinal pathologies and anxiety in rats. Proc Natl Acad Sci U S A. 2003;100(26):15370–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chang YF et al. Chronic L-lysine develops anti-pentylenetetrazol tolerance and reduces synaptic GABAergic sensitivity. Eur J Pharmacol. 1993;233(2–3):209–17.PubMedCrossRefGoogle Scholar
  60. 60.
    Masood A et al. Modulation of stress-induced neurobehavioral changes by nitric oxide in rats. Eur J Pharmacol. 2003;458(1–2):135–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Srinongkote S et al. A diet fortified with L-lysine and L-arginine reduces plasma cortisol and blocks anxiogenic response to transportation in pigs. Nutr Neurosci. 2003;6(5):283–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Jezova D et al. Subchronic treatment with amino acid mixture of L-lysine and L-arginine modifies neuroendocrine activation during psychological stress in subjects with high trait anxiety. Nutr Neurosci. 2005;8(3):155–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Smriga M et al. Oral treatment with L-lysine and L-arginine reduces anxiety and basal cortisol levels in healthy humans. Biomed Res. 2007;28(2):85–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Smriga M et al. Lysine fortification reduces anxiety and lessens stress in family members in economically weak communities in Northwest Syria. Proc Natl Acad Sci U S A. 2004;101(22):8285–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Clements Jr RS, Darnell B. Myo-inositol content of common foods: development of a high-myo-inositol diet. Am J Clin Nutr. 1980;33(9):1954–67.PubMedGoogle Scholar
  66. 66.
    Einat H, Belmaker RH. The effects of inositol treatment in animal models of psychiatric disorders. J Affect Disord. 2001;62(1–2):113–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Frey R et al. Myo-inositol in depressive and healthy subjects determined by frontal 1H-magnetic resonance spectroscopy at 1.5 tesla. J Psychiatr Res. 1998;32(6):411–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Levine J et al. Inositol treatment raises CSF inositol levels. Brain Res. 1993;627(1):168–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Rahman S, Neuman RS. Myo-inositol reduces serotonin (5-HT2) receptor induced homologous and heterologous desensitization. Brain Res. 1993;631(2):349–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Marazziti D et al. Decreased inhibitory activity of PKC in OCD patients after six months of treatment. Psychoneuroendocrinology. 2002;27(7):769–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Marazziti D et al. Increased inhibitory activity of protein kinase C on the serotonin transporter in OCD. Neuropsychobiology. 2000;41(4):171–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Einat H et al. The antidepressant activity of inositol in the forced swim test involves 5-HT2 receptors. Behav Brain Res. 2001;118(1):77–83.PubMedCrossRefGoogle Scholar
  73. 73.
    Harvey BH et al. Defining the neuromolecular action of myo-inositol: application to obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(1):21–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Levine J et al. Combination of inositol and serotonin reuptake inhibitors in the treatment of depression. Biol Psychiatry. 1999;45(3):270–3.PubMedCrossRefGoogle Scholar
  75. 75.
    Camfield DA, Sarris J, Berk M. Nutraceuticals in the treatment of obsessive compulsive disorder (OCD): a review of mechanistic and clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):887–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Levine J. Controlled trials of inositol in psychiatry. Eur Neuropsychopharmacol. 1997;7(2):147–55.PubMedCrossRefGoogle Scholar
  77. 77.
    Carey PD et al. Single photon emission computed tomography (SPECT) in obsessive-compulsive disorder before and after treatment with inositol. Metab Brain Dis. 2004;19(1–2):125–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Levine J, Pomerantz T, Belmaker RH. The effect of inositol on cognitive processes and mood states in normal volunteers. Eur Neuropsychopharmacol. 1994;4(3):417.CrossRefGoogle Scholar
  79. 79.
    Mukai T et al. A meta-analysis of inositol for depression and anxiety disorders. Hum Psychopharmacol. 2014;29(1):55–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Benjamin J et al. Double-blind, placebo-controlled, crossover trial of inositol treatment for panic disorder. Am J Psychiatry. 1995;152(7):1084–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Benjamin J et al. Acute inositol does not attenuate m-CPP-induced anxiety, mydriasis and endocrine effects in panic disorder. J Psychiatr Res. 1997;31(4):489–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Kaplan Z et al. Inositol treatment of post-traumatic stress disorder. Anxiety. 1996;2(1):51–2.PubMedCrossRefGoogle Scholar
  83. 83.
    Fux M et al. Inositol treatment of obsessive-compulsive disorder. Am J Psychiatry. 1996;153(9):1219–21.PubMedCrossRefGoogle Scholar
  84. 84.
    Fux M, Benjamin J, Belmaker RH. Inositol versus placebo aumentation of serotonin reuptake inhibitor in the treatment of obsessive-compulsive disorder: a double-blind cross-over study. Int J Neuropsychopharmacol. 1999;2(3):193–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Seedat S, Stein DJ. Inositol augmentation of serotonin reuptake inhibitors in treatment-refractory obsessive – compulsive disorder: an open trial. Int Clin Psychopharmacol. 1999;14(6):353–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Seedat S, Stein DJ, Harvey BH. Inositol in the treatment of trichotillomania and compulsive skin picking [5]. J Clin Psychiatry. 2001;62(1):60–1.PubMedCrossRefGoogle Scholar
  87. 87.
    Levine J et al. Double-blind, controlled trial of inositol treatment of depression. Am J Psychiatry. 1995;152(5):792–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Bonanomi L, Gazzaniga A. Toxicology, pharmacokinetics and metabolism of acetylcysteine. Eur J Respir Dis Suppl. 1980;111:45–51.PubMedGoogle Scholar
  89. 89.
    Pendyala L, Creaven PJ. Pharmacokinetic and pharmacodynamic studies of N-acetylcysteine, a potential chemopreventive agent during a Phase I trial. Cancer Epidemiol Biomarkers and Prev. 1995;4(3):245–51.Google Scholar
  90. 90.
    Allegra L et al. Human neutrophil oxidative bursts and their in vitro modulation by different N-acetylcysteine concentrations. Arzneimittelforschung. 2002;52(9):669–76.PubMedGoogle Scholar
  91. 91.
    Atkuri KR, Mantovani JJ, Herzenberg LA. N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Samuni Y et al. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117–29.PubMedCrossRefGoogle Scholar
  93. 93.
    Katz M et al. Cerebrospinal fluid concentrations of N-acetylcysteine after oral administration in Parkinson's disease. Parkinsonism Relat Disord. 2015;21(5):500–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Pittenger C, Bloch MH, Williams K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther. 2011;132(3):314–32.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Berk M et al. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 2008;29(7):346–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Camfield DA. The actions of N-Acetylcysteine in the central nervous system: Implications for the treatment of neurodegenerative and neuropsychiatric disorders. In: Scholey AB, Stough C, editors. Advances in natural medicines, nutraceuticals and neurocognition. Florida: CRC Press, Taylor & Francis Group; 2013.Google Scholar
  97. 97.
    Costa-Campos L et al. Interactive effects of N-acetylcysteine and antidepressants. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:125–30.PubMedCrossRefGoogle Scholar
  98. 98.
    De Rosa SC et al. N-acetylcysteine replenishes glutathione in HIV infection. Eur J Clin Invest. 2000;30(10):915–29.PubMedCrossRefGoogle Scholar
  99. 99.
    Deepmala et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev. 2015;55:294–321.PubMedCrossRefGoogle Scholar
  100. 100.
    Berk M et al. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci. 2013;34(3):167–77.PubMedCrossRefGoogle Scholar
  101. 101.
    Strawn JR, Saldaña SN. Treatment with adjunctive N-acetylcysteine in an adolescent with selective serotonin reuptake inhibitor-resistant anxiety. J Child Adolesc Psychopharmacol. 2012;22(6):472–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Behl A et al. Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology. 2010;61(4):210–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Ozdemir E et al. Serum selenium and plasma malondialdehyde levels and antioxidant enzyme activities in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):62–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Konuk N et al. Plasma levels of tumor necrosis factor-alpha and interleukin-6 in obsessive compulsive disorder. Mediators Inflamm. 2007;2007.Google Scholar
  105. 105.
    Ng F et al. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11(6):851–76.PubMedCrossRefGoogle Scholar
  106. 106.
    Lafleur DL et al. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessive-compulsive disorder. Psychopharmacology (Berl). 2006;184(2):254–6.CrossRefGoogle Scholar
  107. 107.
    Van Ameringen M et al. N-acetylcysteine augmentation in treatment resistant obsessive compulsive disorder: a case series. J Obesessive-Compuls Relat Disord. 2013;2(1):48–52.CrossRefGoogle Scholar
  108. 108.
    Afshar H et al. N-acetylcysteine add-on treatment in refractory obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol. 2012;32(6):797–803.PubMedCrossRefGoogle Scholar
  109. 109.
    Sarris J et al. N-Acetyl Cysteine (NAC) in the treatment of obsessive-compulsive disorder: a 16-week, double-blind, randomised, placebo-controlled study. CNS Drugs. 2015;29(9):801–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Sarris, J., et al. Participant characteristics as modifiers of response to N-Acetyl cysteine (NAC) in Obsessive-Compulsive Disorder. Clin Psychol Sci. http://dx.doi.org/10.1177/2167702616639864.
  111. 111.
    Berk M et al. Nail-biting stuff? The effect of N-acetyl cysteine on nail-biting. CNS Spectr. 2009;14(7):357–60.PubMedCrossRefGoogle Scholar
  112. 112.
    Ghanizadeh A, Derakhshan N, Berk M. N-acetylcysteine versus placebo for treating nail biting, a double blind randomized placebo controlled clinical trial. Anti-Inflamm Antiallergy Agents Med Chem. 2013;12(3):223–8.CrossRefGoogle Scholar
  113. 113.
    Grant JE, Odlaug BL, Suck WK. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study. Arch Gen Psychiatry. 2009;66(7):756–63.PubMedCrossRefGoogle Scholar
  114. 114.
    Odlaug BL, Grant JE. N-acetyl cysteine in the treatment of grooming disorders. J Clin Psychopharmacol. 2007;27(2):227–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Rodrigues-Barata AR et al. N-acetylcysteine in the treatment of trichotillomania. Int J Trichol. 2012;4(3):176–8.CrossRefGoogle Scholar
  116. 116.
    Silva-Netto R et al. N-acetylcysteine in the treatment of skin-picking disorder. Rev Bras Psiquiatr. 2014;36(1):101.PubMedCrossRefGoogle Scholar
  117. 117.
    Oliver G et al. N-acetyl cysteine in the treatment of obsessive compulsive and related disorders: a systematic review. Clin Psychopharmacol Neurosci. 2015;13(1):12–24.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Firoz M, Graber M. Bioavallability of US commercial magnesium preparations. Magnes Res. 2001;14(4):257–62.PubMedGoogle Scholar
  119. 119.
    Lindberg JS et al. Magnesium bioavailability from magnesium citrate and magnesium oxide. J Am Coll Nutr. 1990;9(1):48–55.PubMedCrossRefGoogle Scholar
  120. 120.
    Walker AF et al. Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res. 2003;16(3):183–91.PubMedGoogle Scholar
  121. 121.
    Böger RH, Bode-Böger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001:79–99.Google Scholar
  122. 122.
    L-arginine. Review of natural products. Facts & comparisons [database online]. October 2010, St. Louis: Wolters Kluwer Health Inc.Google Scholar
  123. 123.
    Carlomagno G et al. Myo-inositol in the treatment of premenstrual dysphoric disorder. Hum Psychopharmacol. 2011;26(7):526–30.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of Psychology, University of WollongongWollongongAustralia
  2. 2.Centre for Human Psychopharmacology, Swinburne University of TechnologyHawthornAustralia

Personalised recommendations