Cognitive Anxiolytics

  • Genevieve Z. SteinerEmail author
  • Danielle C. Mathersul


This chapter will present clinical evidence for the efficacy of herbal treatments which address symptoms of anxiety primarily via their effects on cognitive functioning.
  • Brahmi (Bacopa monnieri)

  • Ginkgo (Ginkgo Biloba)

  • Lemon Balm (Melissa officinalis)

  • Tea (Camellia sinensis)

  • Sage (Salvia spp.)

  • Rosemary (Rosmarinus officinalis)


Social Anxiety Disorder Rosmarinic Acid Anxiolytic Effect Generalise Anxiety Disorder Ginkgo Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ferreri F, Lapp LK, Peretti CS. Current research on cognitive aspects of anxiety disorders. Curr Opin Psychiatry. 2011;24:49–54.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Sullivan K, Newman EF. Neuropsychological impairments in panic disorder: a systematic review. J Affect Disord. 2014;167:268–84.PubMedCrossRefGoogle Scholar
  3. 3.
    O’Toole MS, Pedersen AD. A systematic review of neuropsychological performance in social anxiety disorder. Nord J Psychiatry. 2011;65:147–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Yang Y et al. Cognitive impairment in generalized anxiety disorder revealed by event-related potential N270. Neuropsychiatr Dis Treat. 2015;11:1405–11.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Rickels K, Rynn M. Pharmacotherapy of generalized anxiety disorder. J Clin Psychiatry. 2002;63:9–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Stewart SA. The effects of benzodiazepines on cognition. J Clin Psychiatry. 2005;66:9–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine. 2005;12:305–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013;16:313–26.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Singh HK, Dhawan BN. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn (Brahmi). Indian J Pharmacol. 1997;29:359–65.Google Scholar
  10. 10.
    Nathan PJ et al. The acute effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy normal subjects. Hum Psychopharmacol. 2001;16:345–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Downey LA et al. An acute, double-blind, placebo-controlled crossover study of 320 mg and 640 mg doses of a special extract of Bacopa monnieri (CDRI 08) on sustained cognitive performance. Phytother Res. 2013;27:1407–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Becker RE. Therapy of the cognitive deficit in Alzheimers disease: the cholinergic system. In: Becker RE, Giabcobini E, editors. Cholinergic basis for Alzheimer therapy. Boston: Birkhauser; 1991. p. 1–22.CrossRefGoogle Scholar
  13. 13.
    Bhattacharya SK et al. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res. 2000;14:174–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Piyabhan P, Wetchateng T. Neuroprotective effects of Bacopa monnieri (brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia. J Med Assoc Thai. 2014;97:S50–6.PubMedGoogle Scholar
  15. 15.
    Vollala VR, Upadhya S, Nayak S. Enhanced dendritic arborization of hippocampal CA3 neurons by Bacopa monniera extract treatment in adult rats. Rom J Morphol Embryol. 2011;52:879–86.PubMedGoogle Scholar
  16. 16.
    Bhattacharya SK, Ghosal S. Anxiolytic activity of a standardized extract of Bacopa monniera: an experimental study. Phytomedicine. 1998;5:77–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Benson S et al. An acute, double-blind, placebo-controlled cross-over study of 320 mg and 640 mg doses of Bacopa monnieri (CDRI 08) on multitasking stress reactivity and mood. Phytother Res. 2014;28:551–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Calabrese C et al. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med. 2008;14:707–13.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kumar T et al. Randomized control, double blind cross-over study to clinically assess the Rasayana effect of a standardized extract of Brahmi (Bacopa monniera) in adult human volunteers. Int J Pharm Pharm Sci. 2011;3(Suppl 4):263–6.Google Scholar
  20. 20.
    Sathyanarayanan V et al. Brahmi for the better? New findings challenging cognition and anti-anxiety effects of Brahmi (Bacopa monniera) in healthy adults. Psychopharmacology (Berl). 2013;227:299–306.CrossRefGoogle Scholar
  21. 21.
    Sarris J, McIntyre E, Camfield DA. Plant-based medicines for anxiety disorders, Part 2: a review of clinical studies with supporting preclinical evidence. CNS Drugs. 2013;27:301–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Kongkeaw C et al. Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract. J Ethnopharmacol. 2014;151:528–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Pase MP et al. The cognitive-enhancing effects of bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med. 2012;18:647–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Singh B et al. Biology and chemistry of Ginkgo biloba. Fitoterapia. 2008;79:401–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Christen Y, Maixent JM. What is Ginkgo biloba extract EGb 761? An overview from molecular biology to clinical medicine. Cell Mol Biol. 2002;48(6):601–11.PubMedGoogle Scholar
  26. 26.
    Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol. 2002;67:235–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Diamond BJ et al. Ginkgo biloba extract: mechanisms and clinical indications. Arch Phys Med Rehabil. 2000;81:668–78.PubMedGoogle Scholar
  28. 28.
    Domingo MT et al. Inhibition by ginkgolides of the binding of [3H]PAF platelet-activating factor (PAF) to platelet membranes. In: Braquet P, editor. Ginkgolides. Barcelona: JR Prous; 1988. p. 79–84.Google Scholar
  29. 29.
    Hou Y et al. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology. 2010;58:911–20.PubMedCrossRefGoogle Scholar
  30. 30.
    DeFeudis FV, Drieu K. “Stress-alleviating” and “vigilance-enhancing” actions of Ginkgo biloba extract (EGb 761). Drug Dev Res. 2004;62:1–25.CrossRefGoogle Scholar
  31. 31.
    Belviranli M, Okudan N. The effects of Ginkgo biloba extract on cognitive functions in aged female rats: the role of oxidative stress and brain-derived neurotrophic factor. Behav Brain Res. 2015;278:453–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Ward CP et al. Ginkgo biloba extract: cognitive enhancer or antistress buffer. Pharmacol Biochem Behav. 2002;72:913–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Satyan KS et al. Effect of Ginkgolic acid conjugates on the brain monoamines and metabolites in rodents. Biogenic Amines. 1997;13:143–51.Google Scholar
  34. 34.
    Hartley DE et al. Effects on cognition and mood in postmenopausal women of 1-week treatment with Ginkgo biloba. Pharmacol Bioch Behav. 2003;75:711–20.CrossRefGoogle Scholar
  35. 35.
    Woelk H et al. Ginkgo biloba special extract EGb 761® in generalized anxiety disorder and adjustment disorder with anxious mood: a randomized, double-blind, placebo-controlled trial. J Psychiatr Res. 2007;41:472–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Gavrilova SI et al. Efficacy and safety of Ginkgo biloba extract EGb 761® in mild cognitive impairment with neuropsychiatric symptoms: a randomized, placebo-controlled, double-blind, multicenter trial. Int J Geriatr Psychiatry. 2014;29:1087–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Hoerr R. Behavioural and psychological symptoms of dementia (BPSD): effects of EGb 761®. Pharmacopsychiatry. 2003;36(Suppl 1).Google Scholar
  38. 38.
    Vellas B et al. Long-term use of standardised ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol. 2012;11:851–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2007;2.Google Scholar
  40. 40.
    Brondino N et al. A systematic review and meta-analysis of ginkgo biloba in neuropsychiatric disorders: from ancient tradition to modern-day medicine. Evid Based Complement Alternat Med. 2013;2013.Google Scholar
  41. 41.
    Scholey A et al. Investigation of a Melissa officinalis special extract on Cognition II: human study – Lemon balm extract administered in confectionary bars. Agro Food Ind Hi-Tech. 2015;26:12–4.Google Scholar
  42. 42.
    Kennedy DO, Scholey AB. The psychopharmacology of European herbs with cognition-enhancing properties. Curr Pharm Des. 2006;12:4613–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Kennedy DO et al. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology. 2003;28:1871–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Awad R et al. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother Res. 2009;23:1075–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Buchwald-Werner S, Vazquez I, Röchter S. Investigation of a Melissa officinalis special extract on Cognition I: in vitro study on muscarinic properties. Agro Food Ind Hi-Tech. 2015;26:34–6.Google Scholar
  46. 46.
    Scholey A et al. Anti-stress effects of lemon balm-containing foods. Nutrients. 2014;6:4805–21.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lin SH et al. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. J Ethnopharmacol. 2015;175:266–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Ibarra A et al. Effects of chronic administration of Melissa officinalis L. extract on anxiety-like reactivity and on circadian and exploratory activities in mice. Phytomedicine. 2010;17:397–403.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoo DY et al. Effects of Melissa officinalis L. (Lemon Balm) extract on neurogenesis associated with serum corticosterone and GABA in the mouse dentate gyrus. Neurochem Res. 2011;36:250–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Taiwo AE et al. Anxiolytic and antidepressant-like effects of Melissa officinalis (lemon balm) extract in rats: influence of administration and gender. Indian J Pharmacol. 2012;44:189–92.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Raines T et al. Investigation of the anxiolytic effects of luteolin, a lemon balm flavonoid in the male Sprague-Dawley rat. AANA J. 2009;77:33–6.PubMedGoogle Scholar
  52. 52.
    Kennedy DO et al. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav. 2002;72:953–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Kennedy DO, Little W, Scholey AB. Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (lemon balm). Psychosom Med. 2004;66:607–13.PubMedCrossRefGoogle Scholar
  54. 54.
    Cases J et al. Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances. Med J Nutrition Metab. 2011;4:211–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Ballard CG et al. Aromatherapy as a safe and effective treatment for the management of agitation in severe dementia: the results of a double-blind, placebo-controlled trial with Melissa. J Clin Psychiatry. 2002;63:553–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Akhondzadeh S et al. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosur Psychiatry. 2003;74:863–6.CrossRefGoogle Scholar
  57. 57.
    Burns A et al. A double-blind placebo-controlled randomized trial of melissa officinalis oil and donepezil for the treatment of agitation in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;31:158–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Feng L et al. Cognitive function and tea consumption in community dwelling older Chinese in Singapore. J Nutr Health Aging. 2010;14:433–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuriyama S et al. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr. 2006;83:355–61.PubMedGoogle Scholar
  60. 60.
    Ng TP et al. Tea consumption and cognitive impairment and decline in older Chinese adults. Am J Clin Nutr. 2008;88:224–31.PubMedGoogle Scholar
  61. 61.
    Hozawa A et al. Green tea consumption is associated with lower psychological distress in a general population: the Ohsaki Cohort 2006 Study. Am J Clin Nutr. 2009;90:1390–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Sharangi AB. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – a review. Food Res Int. 2009;42:529–35.CrossRefGoogle Scholar
  63. 63.
    Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21:334–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82:1807–21.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lu K et al. The acute effects of L-theanine in comparison with alprazolam on anticipatory anxiety in humans. Hum Psychopharmacol. 2004;19:457–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Yokogoshi H et al. Effect of theanine, r-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem Res. 1998;23:667–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Lardner AL. Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutr Neurosci. 2014;17:145–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Heese T et al. Anxiolytic effects of L-theanine: a component of green tea-when combined with midazolam, in the male Sprague-Dawley rat. AANA J. 2009;77:445–9.PubMedGoogle Scholar
  69. 69.
    Kelly SP et al. L-theanine and caffeine in combination affect human cognition as evidenced by oscillatory alpha-band activity and attention task performance. J Nutr. 2008;138.Google Scholar
  70. 70.
    Wise LE et al. L-theanine attenuates abstinence signs in morphine-dependent rhesus monkeys and elicits anxiolytic-like activity in mice. Pharmacol Biochem Behav. 2012;103:245–52.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Banji D et al. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res. 2011;1410:141–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Kaur T et al. Effects of green tea extract on learning, memory, behavior and acetylcholinesterase activity in young and old male rats. Brain Cogn. 2008;67:25–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Bitu Pinto N et al. Neuroprotective properties of the standardized extract from Camellia sinensis (Green Tea) and its main bioactive components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA model of Parkinson’s Disease. Evid Based Complement Alternat Med. 2015;2015.Google Scholar
  74. 74.
    Vignes M et al. Anxiolytic properties of green tea polyphenol (−)-epigallocatechin gallate (EGCG). Brain Res. 2006;1110:102–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Stringer M et al. Low dose EGCG treatment beginning in adolescence does not improve cognitive impairment in a Down syndrome mouse model. Pharmacol Biochem Behav. 2015:70–9.Google Scholar
  76. 76.
    Dodd FL et al. A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl). 2015;232:2563–76.CrossRefGoogle Scholar
  77. 77.
    Rogers PJ et al. Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl). 2008;195:569–77.CrossRefGoogle Scholar
  78. 78.
    Camfield DA et al. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutr Rev. 2014;72:507–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Ritsner MS et al. L-theanine relieves positive, activation, and anxiety symptoms in patients with schizophrenia and schizoaffective disorder: an 8-week, randomized, double-blind, placebo-controlled, 2-center study. J Clin Psychiatry. 2011;72(1):34–42.PubMedCrossRefGoogle Scholar
  80. 80.
    White DJ et al. Anti-stress, behavioural and magnetoencephalography effects of an l-theanine-based nutrient drink: a randomised, double-blind, placebo-controlled, crossover trial. Nutrients. 2016;8.Google Scholar
  81. 81.
    Yoto A et al. Effects of L-theanine or caffeine intake on changes in blood pressure under physical and psychological stresses. J Physiol Anthropol. 2012;31:28.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kimura K et al. l-Theanine reduces psychological and physiological stress responses. Biol Psychol. 2007;74(1):39–45.PubMedCrossRefGoogle Scholar
  83. 83.
    Scholey A et al. Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite. 2012;58:767–70.PubMedCrossRefGoogle Scholar
  84. 84.
    Wightman EL et al. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum Psychopharmacol. 2012;27:177–86.PubMedCrossRefGoogle Scholar
  85. 85.
    Borgwardt S et al. Neural effects of green tea extract on dorsolateral prefrontal cortex. Eur J Clin Nutr. 2012;66:1187–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Perry E, Howes MJR. Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci Ther. 2011;17:683–98.PubMedCrossRefGoogle Scholar
  87. 87.
    Perry NSL et al. In-vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol. 2000;52:895–902.PubMedCrossRefGoogle Scholar
  88. 88.
    Savelev S et al. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol Biochem Behav. 2003;75:661–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Perry NSL et al. Salvia lavandulaefolia essential oil inhibits cholinesterase in vivo. Phytomedicine. 2002;9:48–51.PubMedCrossRefGoogle Scholar
  90. 90.
    Savelev SU, Okello EJ, Perry EK. Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother Res. 2004;18:315–24.PubMedCrossRefGoogle Scholar
  91. 91.
    Perry NSL et al. Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav. 2003;75:651–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Herrera-Ruiz M et al. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J Ethnopharmacol. 2006;107:53–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Mora S et al. The hydroalcoholic extract of Salvia elegans induces anxiolytic- and antidepressant-like effects in rats. J Ethnopharmacol. 2006;106:76–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Hosseinzadeh H, Danaee A, Ziaee T. Anti-anxiety effect of aqueous and ethanolic extracts of Salvia leriifolia Benth. leaves in mice using elevated plus maze. J Med Plants. 2008;7:25–36.Google Scholar
  95. 95.
    Rabbani M et al. Anxiolytic effects of Salvia reuterana Boiss. on the elevated plus-maze model of anxiety in mice. J Ethnopharmacol. 2005;101:100–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu AD et al. Anxiolytic effect of essential oils of Salvia miltiorrhiza in rats. Int J Clin Exp Med. 2015;8:12756–64.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Tildesley NTJ et al. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav. 2005;83:699–709.PubMedCrossRefGoogle Scholar
  98. 98.
    Kennedy DO et al. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology. 2006;31:845–52.PubMedCrossRefGoogle Scholar
  99. 99.
    Kennedy DO et al. Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J Psychopharmacol. 2011;25:1088–100.PubMedCrossRefGoogle Scholar
  100. 100.
    Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition. 2006;22:321–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Tildesley NTJ et al. Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav. 2003;75:669–74.PubMedCrossRefGoogle Scholar
  102. 102.
    Scholey AB et al. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology (Berl). 2008;198:127–39.CrossRefGoogle Scholar
  103. 103.
    Akhondzadeh S et al. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther. 2003;28:53–9.PubMedCrossRefGoogle Scholar
  104. 104.
    El Omri A et al. Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2. J Ethnopharmacol. 2010;131:451–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Orhan I et al. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem. 2008;108:663–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Kovar KA et al. Blood levels of 1,8-cineole and locomotor activity of mice after inhalation and oral administration of rosemary oil. Planta Med. 1987;53:315–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Ozarowski M et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia. 2013;91:261–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Heuberger E et al. Physiological and behavioral effects of 1,8-cineol and (±)-linalool: a comparison of inhalation and massage aromatherapy. Nat Prod Commun. 2008;3:1103–10.Google Scholar
  109. 109.
    Moss M et al. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci. 2003;113:15–38.PubMedCrossRefGoogle Scholar
  110. 110.
    Diego MA et al. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. Int J Neurosci. 1998;96:217–24.PubMedCrossRefGoogle Scholar
  111. 111.
    Tsang HW, Ho TY. A systematic review on the anxiolytic effects of aromatherapy on rodents under experimentally induced anxiety models. Rev Neurosci. 2010;21:141–52.PubMedCrossRefGoogle Scholar
  112. 112.
    Ferlemi AV et al. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies. Chem Biol Interact. 2015;237:47–57.PubMedCrossRefGoogle Scholar
  113. 113.
    Abdelhalim A et al. Antidepressant, anxiolytic and antinociceptive activities of constituents from rosmarinus officinalis. J Phar Pharm Sci. 2015;18:448–59.CrossRefGoogle Scholar
  114. 114.
    McCaffrey R, Thomas DJ, Kinzelman AO. The effects of lavender and rosemary essential oils on test-taking anxiety among graduate nursing students. Holist Nurs Pract. 2009;23:88–93.PubMedCrossRefGoogle Scholar
  115. 115.
    Rho KH et al. Effects of aromatherapy massage on anxiety and self-esteem in Korean elderly women: a pilot study. Int J Neurosci. 2006;116:1447–55.PubMedCrossRefGoogle Scholar
  116. 116.
    Lee YL et al. A systematic review on the anxiolytic effects of aromatherapy in people with anxiety symptoms. J Altern Complement Med. 2011;17:101–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Burnett KM, Solterbeck LA, Strapp CM. Scent and mood state following an anxiety-provoking task. Psychol Rep. 2004;95:707–22.PubMedCrossRefGoogle Scholar
  118. 118.
    Field T. Massage therapy research review. Complement Ther Clin Pract. 2014;20(4=):224–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Keeratitanont K et al. The efficacy of traditional Thai massage for the treatment of chronic pain: a systematic review. Complement Ther Clin Pract. 2015;21:26–32.PubMedCrossRefGoogle Scholar
  120. 120.
    Yuan SLK, Matsutani LA, Marques AP. Effectiveness of different styles of massage therapy in fibromyalgia: a systematic review and meta-analysis. Man Ther. 2015;20:257–64.PubMedCrossRefGoogle Scholar
  121. 121.
    Morin AK. Off-label use of atypical antipsychotic agents for treatment of insomnia. Mental Health Clinician (March 2014-Trends in Sedative-Hypnotic Therapy). 2014;4:65–72.Google Scholar
  122. 122.
    APA. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.Google Scholar
  123. 123.
    Beck AT. Cognitive therapy: basics and beyond. New York: Guilford Press; 1995.Google Scholar
  124. 124.
    Clark, D.A. and A.T. Beck, Cognitive therapy of anxiety disorders: science and practice. 2010, New York: Guilford Publications.Google Scholar
  125. 125.
    Barlow DH. Clinical handbook of psychological disorders: a step-by-step treatment manual. 4th ed. New York: The Guilford Press; 2008.Google Scholar
  126. 126.
    Bennett-Levy J et al. Oxford guide to behavioural experiments in cognitive therapy. Oxford, UK: Oxford University Press; 2004.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Genevieve Z. Steiner
    • 1
    Email author
  • Danielle C. Mathersul
    • 2
    • 3
    • 4
  1. 1.National Institute of Complementary Medicine, Western Sydney UniversityPenrithAustralia
  2. 2.War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care SystemPalo AltoUSA
  3. 3.School of Medicine, Stanford UniversityStanfordUSA
  4. 4.Department of PsychologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations