Skip to main content

Software Design and Optimization of ECG Signal Analysis and Diagnosis for Embedded IoT Devices

  • Chapter
  • First Online:

Abstract

The medical domain is one of the most rapidly expanding application areas of Internet of Things (IoT) technology. For chronic diseases, this technology can be highly useful for the patient, providing constant monitoring and ability for timely intervention of medical staff in case of an emergency. This intended system behavior imposes new requirements to the design and implementation of processing flows implemented on embedded IoT devices which are already constrained by limited computational capabilities and power budget. This work aims at designing and implementing such a bio-medical signal analysis flow based on the case study of arrhythmia detection using electrocardiogram signals and machine learning techniques. Different architectural decisions of the flow are explored at high level and the final optimized version is implemented on a state-of-the-art IoT node. The evaluation of the execution flow on this device provides information on the actual requirements of each sub-component of the flow combined with an analysis of its behavior as computational requirements of the machine learning algorithms scale up.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Electrocardiography, https://en.wikipedia.org/wiki/Electrocardiography

  2. F.I. Marcus, J.N. Ruskin, B. Surawicz, Arrhythmias. J. Am. Coll. Cardiol. 10 (2), 66A–72A (1987)

    Article  Google Scholar 

  3. E.D. Übeyli, ECG beats classification using multiclass support vector machines with error correcting output codes. Digital Signal Process. 17 (3), 675–684 (2007)

    Article  Google Scholar 

  4. R. Mark, G. Moody, MIT-BIH Arrhythmia Database Directory (Massachusetts Institute of Technology, Cambridge, 1988). Available online from: http://www.physionet.org/physiobank/database/mitdb/

  5. R.J. Martis, U.R. Acharya, L.C. Min, ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8 (5), 437–448 (2013)

    Article  Google Scholar 

  6. A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101 (23), e215–e220 (2000)

    Article  Google Scholar 

  7. M.U. Guide, The Mathworks, Inc., vol. 5, p. 333, Natick, MA (1998)

    Google Scholar 

  8. Ojha, D. K., & Subashini, M. (2014). Analysis of Electrocardiograph (ECG) Signal for the Detection of Abnormalities Using MATLAB. World Acad. Sci. Eng. Technol. Int. J. Med. Health Pharm. Biomed. 8 (2), 114–117.

    Google Scholar 

  9. W. Zong, G. Moody, Wqrs-single-channel QRS detector based on length transform. Physionet (2003). http://wwwphysionetorg/physiotools/wag/wqrs-1htm

  10. P. Laguna, R. Jan, E. Bogatell, D. Anglada, QRS detection and waveform boundary recognition using ecgpuwave. PhysioToolkit Open Source Software for Biomedical Science and Engineering, in Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 50–53 (2002)

    Google Scholar 

  11. P. Laguna, R. Jané, P. Caminal, Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput. Biomed. Res. 27 (1), 45–60 (1994)

    Article  Google Scholar 

  12. R. Jané, A. Blasi, J. García, P. Laguna, Evaluation of an automatic threshold based detector of waveform limits in Holter ECG with the qt database. Comput. Cardiol. 24, 295–298 (1997)

    Google Scholar 

  13. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36 (5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Daubechies et al., Ten Lectures on Wavelets, vol. 61 (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  15. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20 (3), 273–297 (1995)

    MATH  Google Scholar 

  16. C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2 (3), 27 (2011)

    Google Scholar 

  17. Tsoutsouras, V., Azariadi, D., Xydis, S., & Soudris, D. (2015, December). Effective Learning and Filtering of Faulty Heart-Beats for Advanced ECG Arrhythmia Detection using MIT-BIH database. In Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 50–53

    Google Scholar 

  18. M.C. Ramon, Intel Galileo and Intel Galileo Gen 2 (Springer, New York, 2014)

    Book  Google Scholar 

  19. G.D. Clifford, F. Azuaje, P. McSharry, Advanced Methods and Tools for ECG Data Analysis (Artech House Publishing, London, 2006)

    Google Scholar 

  20. G.B. Moody, R.G. Mark, The impact of the mit-bih arrhythmia database. IEEE Eng. Med. Biol. Mag. 20 (3), 45–50 (2001).

    Article  Google Scholar 

  21. P. de Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51, 1196–1206 (2004)

    Article  Google Scholar 

  22. P. de Chazal, R. Reilly, A patient-adapting heartbeat classifier using ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 53 (12), 2535–2543 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Tsoutsouras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsoutsouras, V., Azariadi, D., Koliogewrgi, K., Xydis, S., Soudris, D. (2017). Software Design and Optimization of ECG Signal Analysis and Diagnosis for Embedded IoT Devices. In: Keramidas, G., Voros, N., Hübner, M. (eds) Components and Services for IoT Platforms. Springer, Cham. https://doi.org/10.1007/978-3-319-42304-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42304-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42302-9

  • Online ISBN: 978-3-319-42304-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics