Skip to main content

Novel Algorithm for Multiple Quantitative Trait Loci Mapping by Using Bayesian Variable Selection Regression

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9773))

Included in the following conference series:


Most quantitative trait loci (QTL) mapping experiments typically collect phenotypic data on single traits. However, Research complex correlated traits may provide more available information. We develop a novel algorithm for multiple traits quantitative trait loci mapping by using Bayesian Variable Selection Regression, or BVSR, that allows a new robust genetic models for different and correlated traits. We develop computationally efficient Markov chain Monte Carlo (MCMC) algorithms for performing joint analysis. Taken together, these factors put a premium on having interpretable measures of confidence for individual covariates being included in the model. We conduct extensive simulation studies to assess the performance of the proposed methods and to compare with the conventional single-trait model and existing multiple-trait model. More generally, we demonstrate that, despite the apparent computational challenges, our proposed new algorithm can provide useful inferences in quantitative trait loci mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Li, Y., Zhang, M., Zhao, M.: eQTL, Quantitative Trait Loci (QTL). Springer 265–279 (2012)

    Google Scholar 

  2. Mah, J.T., Chia, K.S.: A gentle introduction to SNP analysis: resources and tools. J. Bioinf. Comput. Biol. 5(5), 1123–1138 (2007)

    Article  Google Scholar 

  3. Cookson, W., Liang, L., Abecasis, G., Moffatt, M., Lathrop, M.: Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 10(3), 184–194 (2009)

    Article  Google Scholar 

  4. Smith, L., Kruglyak, M.: Gene-environment interaction in yeast gene expression. PLoSBiol 6(4), e83 (2008)

    Article  Google Scholar 

  5. Brem, B., Kruglyak, L.: The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl. Acad. Sci. U.S.A. 102(5), 1572–1577 (2005)

    Article  Google Scholar 

  6. Gao, C., Tignor, N.L., Strulovici-Barel, Y., Hackett, N.R., Crystal, R.G.: HEFT: eQTL analysis of many thousands of expressed genes while simultaneously controlling for hidden factors. Bioinformatics 30(3), 369–376 (2014)

    Article  Google Scholar 

  7. Higo, K., Ugawa, M., Iwamoto, Y., Korenaga, T.: Plant CIS-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27(1), 297–300 (1999)

    Article  Google Scholar 

  8. Mahr, S., Burmester, G.R., Hilke, D., Göbel, U., Grützkau, A., Häupl, T., Hauschild, M., Koczan, D., Krenn, V., Neidel, J.: CIS-and trans-acting gene regulation is associated with osteoarthritis. Am. J. Hum. Genet. 78(5), 793–803 (2006)

    Article  Google Scholar 

  9. Cheng, W., Shi, Y., Zhang, X., Wang, W.: Fast and robust group-wise eQTL mapping using sparse graphical models. BMC Bioinformatics 16, 2 (2015)

    Article  Google Scholar 

  10. Huang, D.S., Yu, H.J.: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(2), 457–467 (2013)

    Article  Google Scholar 

  11. Zheng, C.H., Zhang, L., Ng, V.T.-Y., Shiu, C.K., Huang, D.S.: Molecular pattern discovery based on penalized matrix decomposition. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(6), 1592–1603 (2011)

    Article  Google Scholar 

  12. Zheng, C.H., Huang, D.S., Zhang, L., Kong, K.Z.: Tumor clustering using non-negative matrix factorization with gene selection. IEEE Trans. Inf Technol. Biomed. 13(4), 599–607 (2009)

    Article  Google Scholar 

  13. Deng, S.P., Zhu, L., Huang, D.S.: Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(1), 27–35 (2016)

    Article  Google Scholar 

  14. Zhu, L., Guo, W.L., Deng, S.P., Huang, D.S.: ChIP-PIT: Enhancing the analysis of ChIP-Seq data using convex-relaxed pair-wise interaction tensor decomposition. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(1), 55–63 (2016)

    Article  Google Scholar 

  15. Zhu, L., Deng, S.P., Huang, D.S.: Two-stage geometric method for pruning unreliable links in protein-protein networks. IEEE Trans. Nano Biosci. 14(5), 528–534 (2015)

    Article  Google Scholar 

  16. Deng, S.P., Zhu, L., Huang, D.S.: Mining the bladder cancer-associated genes by an integrated strategy for the construction and analysis of differential co-expression networks. BMC Genom. 16 (2015)

    Google Scholar 

  17. Deng, S.P., Huang, D.S.: SFAPS: an R package for structure/function analysis of protein sequences based on informational spectrum method. Methods 69(3), 207–212 (2014)

    Article  Google Scholar 

  18. Huang, D.S., Zhang, L., Han, K., Deng, S.P., Yang, K., Zhang, H.B.: Prediction of protein-protein interactions based on protein-protein correlation using least squares regression. Curr. Protein Pept. Sci. 15(6), 553–560 (2014)

    Article  Google Scholar 

  19. Zhu, L., You, Z.H., Huang, D.S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE 8(4), e58368 (2013)

    Article  Google Scholar 

Download references


This work was supported by the grants of the National Science Foundation of China, Nos. 61133010, 61520106006, 31571364, 61532008, 61572364, 61373105, 61303111, 61411140249, 61402334, 61472282, 61472280, 61472173, 61572447, and 61373098, China Postdoctoral Science Foundation Grant, Nos. 2014M561513 and 2015M580352.

Author information

Authors and Affiliations


Corresponding author

Correspondence to De-Shuang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Yuan, L., Han, K., Huang, DS. (2016). Novel Algorithm for Multiple Quantitative Trait Loci Mapping by Using Bayesian Variable Selection Regression. In: Huang, DS., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2016. Lecture Notes in Computer Science(), vol 9773. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42296-1

  • Online ISBN: 978-3-319-42297-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics