Advertisement

A Compressed Sensing Based Feature Extraction Method for Identifying Characteristic Genes

  • Sheng-Jun Li
  • Junliang Shang
  • Jin-Xing Liu
  • Huiyu Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9772)

Abstract

In current molecular biology, it becomes more and more important to identify characteristic genes closely correlated with a key biological process from gene expression data. In this paper, a novel compressed sensing (CS) based feature extraction method named CSGS is proposed to identify the characteristic genes. Considering the transposed gene expression matrix and class labels as sensing matrix and measurement vector, respectively, CS reconstruction is implemented by basis pursuit algorithm. Top ranking genes with high signal weights are retained as the characteristic genes. Experiments of CSGS are performed on leukemia data set and compared with other sparse methods. Results demonstrate that CSGS is effective in identifying characteristic genes, and is not sensitive to parameters. CSGS could offer a simple way for feature extraction and provide more clues for biologists.

Keywords

Gene expression data Characteristic genes Compressed sensing Feature extraction 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.61502272, 61572284, 61572283); the Award Foundation Project of Excellent Young Scientists in Shandong Province (BS2014DX004, BS2014DX005); Project of Shandong Province Higher Educational Science and Technology Program (J13LN31); Scientific Research Foundation of Qufu Normal University(XJ201226); the Science and Technology Planning Project of Qufu Normal University (xkj201524); the Elaborate Experiment Project of Qufu Normal University (jp2015005) and the Innovation and Entrepreneurship Training Project for College Students of Qufu Normal University (2015A059).

References

  1. 1.
    Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics. 10(3), 515–534 (2009)CrossRefGoogle Scholar
  2. 2.
    Liu, J.X., Zheng, C.H., Xu, Y.: Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition. Comput. Biol. Med. 42(5), 582–589 (2012)CrossRefGoogle Scholar
  3. 3.
    Liu, J.-X., Gao, Y.-L., Xu, Y., Zheng, C.-H., You, J.: Differential expression analysis on RNA-Seq count data based on penalized matrix decomposition. IEEE Trans. Nanobiosci. 13(1), 12–18 (2014)CrossRefGoogle Scholar
  4. 4.
    Luss, R., d’Aspremont, A.: Clustering and feature selection using sparse principal component analysis. Opt. Eng. 11(1), 145–157 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baraniuk, R.G.: Compressive sensing. IEEE Sign. Process. Mag. 24(4), 118–120, 124 (2007)Google Scholar
  6. 6.
    Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theor. 56(4), 1982–2001 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Trocan, M., Tramel, E.W., Fowler, J.E., Pesquet, B.: Compressed-sensing recovery of multiview image and video sequences using signal prediction. Multimedia Tools Appl. 72(1), 95–121 (2014)CrossRefGoogle Scholar
  9. 9.
    Gholami, A., Siahkoohi, H.: Regularization of linear and non-linear geophysical Ill-posed problems with joint sparsity constraints. Geophys. J. Int. 180(2), 871–882 (2010)CrossRefGoogle Scholar
  10. 10.
    Ho, C.M., Hsu, S.D.: Determination of Nonlinear Genetic Architecture Using Compressed Sensing (2014). arXiv preprint arXiv:14086583
  11. 11.
    Vattikuti, S., Lee, J.J., Chang, C.C., Hsu, S.D., Chow, C.C.: Applying compressed sensing to genome-wide association studies. GigaScience 3(1), 10 (2014)CrossRefGoogle Scholar
  12. 12.
    Tang, W., Cao, H., Zhang, J.G., Duan, J., Lin, D., Wang, Y.P.: Subtyping of Gliomaby combining gene expression and CNVs data based on a compressive sensing approach. Adv. Genet. Eng. 1, 101 (2012)CrossRefGoogle Scholar
  13. 13.
    Li, S., Shang, J., Chen, Q., Sun, Y., Liu, J.-X.: A compressed sensing based two-stage method for detecting epistatic interactions. Int. J. Data Min. Bioinf. 14(4), 354–372 (2016)CrossRefGoogle Scholar
  14. 14.
    Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Sign. Process. 59(9), 4053–4085 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huang, H., Misra, S., Tang, W., Barani, H., Al-Azzawi, H.: Applications of Compressed Sensing in Communications Networks (2013). arXiv preprint arXiv:13053002
  16. 16.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    SPGL1: A Solver for Large-Scale Sparse Reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1
  18. 18.
    Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., Harter, K.: The Atgenexpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50(2), 347–363 (2007)CrossRefGoogle Scholar
  19. 19.
    Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Brunet, J.-P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. 101(12), 4164–4169 (2004)CrossRefGoogle Scholar
  21. 21.
    Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37(suppl 2), W305–W311 (2009)CrossRefGoogle Scholar
  22. 22.
    Wu, M.-Y., Dai, D.-Q., Zhang, X.-F., Zhu, Y.: Cancer subtype discovery and biomarker identification via a new robust network clustering algorithm (2013). http://dx.doi.org/10.1371/journal.pone.0066256
  23. 23.
    Nakazato, T., Sagawa, M., Yamato, K., Xian, M., Yamamoto, T., Suematsu, M., Ikeda, Y., Kizaki, M.: Myeloperoxidase is a key regulator of oxidative stress-mediated apoptosis in myeloid leukemic cells. Clin. Cancer Res. 13(18), 5436–5445 (2007)CrossRefGoogle Scholar
  24. 24.
    Dunna, N.R., Vuree, S., Kagita, S., Surekha, D., Digumarti, R., Rajappa, S., Satti, V.: Association of GSTP1 gene (I105v) polymorphism with acute leukaemia. J. Genet. 91, 1–4 (2012)CrossRefGoogle Scholar
  25. 25.
    Korošec, B., Glavač, D., Volavšek, M., Ravnik-Glavač, M.: ATP2A3 gene is involved in cancer susceptibility. Cancer Genet. Cytogenet. 188(2), 88–94 (2009)CrossRefGoogle Scholar
  26. 26.
    Delaunay, J., Lecomte, N., Bourcier, S., Qi, J., Gadhoum, Z., Durand, L., Chomienne, C., Robert-Lezenes, J., Smadja-Joffe, F.: Contribution of GM-CSF and IL-8 to the CD44-induced differentiation of acute monoblastic leukemia. Leukemia 22(4), 873–876 (2008)CrossRefGoogle Scholar
  27. 27.
    Joslin, J.M., Fernald, A.A., Tennant, T.R., Davis, E.M., Kogan, S.C., Anastasi, J., Crispino, J.D., Le Beau, M.M.: Haploinsufficiency of EGR1, a candidate gene in the del (5q), leads to the development of myeloid disorders. Blood 110(2), 719–726 (2007)CrossRefGoogle Scholar
  28. 28.
    Li, Z., Zhang, X., Yang, Y., Yang, S., Dong, Z., Du, L., Wang, L., Wang, C.: Periostin expression and its prognostic value for colorectal cancer. Int. J. Mol. Sci. 16(6), 12108–12118 (2015)CrossRefGoogle Scholar
  29. 29.
    Ågesen, T., Berg, M., Clancy, T., Thiis-Evensen, E., Cekaite, L., Lind, G., Nesland, J., Bakka, A., Mala, T., Hauss, H.: CLC and IFNAR1 are differentially expressed and a global immunity score is distinct between early-and late-onset colorectal cancer. Genes Immun. 12(8), 653–662 (2011)CrossRefGoogle Scholar
  30. 30.
    Mostert, B., Sieuwerts, A.M., Vries, J.B., Kraan, J., Lalmahomed, Z., van Galen, A., van der Spoel, P., de Weerd, V., Ramírez-Moreno, R., Smid, M.: mRNA expression profiles in circulating tumor cells of metastatic colorectal cancer patients. Mol. Oncol. 9(4), 920–932 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sheng-Jun Li
    • 1
  • Junliang Shang
    • 1
    • 2
  • Jin-Xing Liu
    • 1
  • Huiyu Li
    • 1
  1. 1.School of Information Science and EngineeringQufu Normal UniversityRizhaoChina
  2. 2.Institute of Network ComputingQufu Normal UniversityRizhaoChina

Personalised recommendations