Skip to main content

A Novel Fitness Function Based on Decomposition for Multi-objective Optimization Problems

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9772))

Included in the following conference series:

  • 1831 Accesses

Abstract

Research on multi-objective optimization problems (MOPs) becomes one of the hottest topics of intelligent computation. The diversity of obtained solutions is of great importance for multi-objective evolutionary algorithms. To this end, in this paper, a novel fitness function based on decomposition is proposed to help solutions converge toward to the Pareto optimal solutions and maintain the diversity of solutions. First, the objective space is decomposed in a set of sub-regions based on a set of direction vectors and obtained solutions are classified. Then, for an obtained solution, the size of the class which contains the solution and an aggregation function value of the solution are used to calculate the fitness value of the solution. Aggregation function which decides whether the target space is divided evenly plays a very important role in the fitness function. A hyperellipsoidal function is designed for any-objective problems. The proposed algorithm has been compared with NSGAII and MOEA/D on various continuous test problems. Experimental results show that the proposed algorithm can find more accurate Pareto front with better diversity in most problems, and the hyperellipsoidal function works better than the weighted Tchebycheff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coello, C.A.C., Van Veldhuizen, D.A., Gary, B.L.: Evolutionary Algorithms for Solving Multiobjective Problems. Kluwer, New York (2002)

    Book  MATH  Google Scholar 

  2. Zhou, A.M., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.F.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  3. Deb, K., Pratap, S.A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Kumphon, B.: Genetic algorithms for multi-objective optimization: application to a multi-reservoir system in the chi river basin Thailand. Water Resour. Manage 27(12), 4369–4378 (2013)

    Article  Google Scholar 

  5. Pires, E.J.S., Machado, J.A.T., Oliveira, P.B.D.: Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12), 5475–5491 (2013)

    Article  MATH  Google Scholar 

  6. Xue, B., Zhang, M.J., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2013)

    Article  Google Scholar 

  7. Qu, B.Y., Suganthan, P.N.: Multi-objective differential evolution with diversity enhancement. J. Zhejian Univ. Sci. C-Comput. Electron. 11(7), 538–543 (2010)

    Article  Google Scholar 

  8. Baatar, N., Jeong, K.Y., Koh, C.S.: Adaptive parameter controlling non-dominated ranking differential evolution for multi-objective optimization of electromagnetic problems. IEEE Trans. Magn. 50(2), 709–712 (2014)

    Article  Google Scholar 

  9. Gong, M.G., Jiao, L.C., Du, H.F., Bo, L.F.: Multiobjective immune algorithm with nondiminated neighbor-based selection. Evol. Comput. 16(2), 225–255 (2008)

    Article  Google Scholar 

  10. Shang, R.H., Jiao, L.C., Liu, F., Ma, W.P.: A novel immun clonal algorithm for MO problems. IEEE Trans. Evol. Comput. 16(1), 35–50 (2012)

    Article  Google Scholar 

  11. Wang, L., Zhong, X., Liu, M.: A novel group search optimizer for multi-objective optimization. Expert Syst. Appl. 39(3), 2939–2946 (2012)

    Article  Google Scholar 

  12. Zhan, Z.H., Li, J.J., Cao, J.N., Zhang, J., Chung, H.H., Shi, Y.H.: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern. 43(2), 445–463 (2013)

    Article  Google Scholar 

  13. Sanchez, M.S., Ortiz, M.C., Sarabia, L.A.: Selection of nearly orthogonal blocks in ‘ad-hoc’ experimental designs. In: 8th Colloquium on Chemiometricum Mediterraneum (CCM), vol. 133, pp. 109–120 (2014)

    Google Scholar 

  14. Liu, S.H., Ye, W.H., Lou, P.H., Tang, D.B.: Structural dynamic optimization for carriage of gantry machining center using orthogonal experimental design and response surface method. J. Chin. Soc. Mech. Eng. 33(3), 211–219 (2012)

    Google Scholar 

  15. Li, H., Zhang, Q.F.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  16. Zhao, S.Z., Suganthan, P.N., Zhang, Q.F.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)

    Article  Google Scholar 

  17. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8, 149–172 (2000)

    Article  Google Scholar 

  18. Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of Congress Evolutionary Computation, pp. 1051–1056 (2002)

    Google Scholar 

  19. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  20. Sierra, M.S., Coello C.A.C.: Improving PSO-based multiobjective optimization using crowding, mutation and ɛ-Dominance. In: Proceedings of Evolutionary Multi-Criterion Optimization, pp. 505–519 (2005)

    Google Scholar 

  21. Friedrich, T., Horoba, C., Neumann, F.: Multiplicative approximations and the hypervolume indicator. In: Proceedings of 2009 Genetic and Evolutionary Computation Conference, pp. 571–578 (2009)

    Google Scholar 

  22. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  23. Asadzadeh, M., Tolson, B.: Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization. Eng. Optim. 45(12), 1489–1509 (2013)

    Article  MathSciNet  Google Scholar 

  24. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Zhang, Q.F., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 303–317. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Li, H., Zhang, Q.F.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  28. Zhao, S.Z., Suganthan, P.N., Zhang, Q.F.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)

    Article  Google Scholar 

  29. Sindhya, K., Miettinen, K., Deb, K.: A hybrid framework for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 17(4), 495–511 (2012)

    Article  MATH  Google Scholar 

  30. Tan, Y.Y., Jiao, Y.C., Li, H., Wang, X.K.: MOEA/D plus uniform design: a new version of MOEA/D for optimization problems with many objectives. Comput. Oper. Res. 40(6), 1648–1660 (2013)

    Article  MathSciNet  Google Scholar 

  31. Jan, M.A., Khanum, R.A.: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D. Appl. Soft Comput. 13(1), 128–148 (2013)

    Article  Google Scholar 

  32. Chang, P.C., Chen, S.H., Zhang, Q.F., Lin, J.L.: MOEA/D for flowshop scheduling problems. In: IEEE Congress on Evolutionary Computation, CEC 2008, pp. 1433–1438 (2008)

    Google Scholar 

  33. Konstantinidism, A., Charalambous, C., Zhou, A., Zhang, Q.F.: Multi-objective mobile agent-based sensor network routing using MOEA/D. In: IEEE Congress on Evolutionary Computation, CEC 2010, pp. 1–8 (2010)

    Google Scholar 

  34. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1998)

    Book  MATH  Google Scholar 

  35. Tekinalp, O., Karsli, G.: A new multiobjective simulated annealing algorithm. J. Global Optim. 39(1), 49–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010)

    Article  Google Scholar 

  37. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  38. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  39. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (no. 61502290), China Postdoctoral Science Foundation (no. 2015M582606), Industrial Research Project of Science and Technology in Shaanxi Province (no. 2015GY016), Fundamental Research Funds for the Central Universities (no. GK201603094) and Natural Science Basic Research Plan in Shaanxi Province of China (no. 2016JQ6045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dai, C., Lei, X., Guo, X. (2016). A Novel Fitness Function Based on Decomposition for Multi-objective Optimization Problems. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9772. Springer, Cham. https://doi.org/10.1007/978-3-319-42294-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42294-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42293-0

  • Online ISBN: 978-3-319-42294-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics