A Practical Algorithm for the 2-Species Duplication-Loss Small Phylogeny Problem

  • Jingli WuEmail author
  • Junwei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)


In this paper, the 2-Species Duplication-Loss Small Phylogeny Problem is studied. By introducing an alignment algorithm, a labeling algorithm and three smart mutate operators, a genetic algorithm G2SP is presented. Algorithm G2SP adopts the method of combining the general operator and the smart ones. The general operator maintains the population diversity effectively, while the smart ones improve population convergence and make it evolve to the optimal solution more quickly. The tRNA and rRNA gene data of six kinds of real bacterium were used to test the performance of algorithms. The experimental results indicate that the G2SP algorithm can get fewer evolution cost than the PBLB algorithm proposed by Holloway et al., and it is an effective method for solving the 2-species duplication-loss small phylogeny problem.


Duplication Loss Small phylogeny problem Alignment Genetic algorithm Bioinformatics 



The authors are grateful to anonymous referees for their helpful comments. This research is supported by the National Natural Science Foundation of China under Grant No. 61363035 and No. 61502111, Guangxi Natural Science Foundation under Grant No. 2015GXNSFAA139288, No. 2013GXNSFBA019263 and No. 2012GXNSFAA053219, Research Fund of Guangxi Key Lab of Multisource Information Mining and Security No. 14-A-03-02 and No. 15-A-03-02, “Bagui Scholar” Project Special Funds, Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing.


  1. 1.
    Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: Shamir, R., Miyano, S., Istrail, S., Pevzner, P., Waterman, M. (eds.) RECOMB 2000, pp. 138–146. ACM Press, New York (2000)Google Scholar
  2. 2.
    Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berard, B., Szollosi, G.J., Daubin, V.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28, i382–i388 (2012)CrossRefGoogle Scholar
  4. 4.
    Patterson, M., Szöllösi, G., Daubin, V., Tannier, E.: Lateral gene transfer, rearrangement, reconciliation. BMC Bioinf. 14, S4 (2013)CrossRefGoogle Scholar
  5. 5.
    Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)CrossRefGoogle Scholar
  6. 6.
    Rogers, H.H., Bergman, C.M., Griffiths-Jones, S.: The evolution of tRNA genes in Drosophila. Genome Biol. Evol. 2, 467–477 (2010)CrossRefGoogle Scholar
  7. 7.
    Withers, M., Wernisch, L., Reis, M.D.: Archaeology and evolution of transfer RNA genes in the Escherichia coli genome. Bioinformatics 12, 933–942 (2006)Google Scholar
  8. 8.
    Bermudez-Santana, C., Attolini, C.S., Kirsten, T., Engelhardt, J., Prohaska, S., Steigele, S., Stadler, P.: Genomic organization of eukaryotic tRNAs. BMC Genomics 11, 270 (2010)CrossRefGoogle Scholar
  9. 9.
    Tang, D., Glazov, E., McWilliam, S., Barris, W., Dalrymple, B.: Analysis of the complement and molecular evolution of tRNA genes in cow. BMC Genomics 10, 188 (2009)CrossRefGoogle Scholar
  10. 10.
    Holloway, P., Swenson, K., Ardell, D.H., et al.: Ancestral genome organization: an alignment approach. J. Comput. Biol. 20(4), 280–295 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Andreotti, S., Reinert, K., Canzar, S.: The duplication-loss small phylogeny problem: from cherries to trees. J. Comput. Biol. 20(9), 643–659 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dondi, R., El-Mabrouk, N.: Aligning and labeling genomes under the duplication-loss model. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 97–107. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Tremblay-Savard, O., Benzaid, B., Lang, B.F., El-Mabrouk, N.: Evolution of tRNA repertoires in bacillus inferred with OrthoAlign. Mol. Biol. Evol. (2015). doi: 10.1093/molbev/msv029 Google Scholar
  14. 14.
    Benzaid, B., El-Mabrouk, N.: Gene order alignment on trees with multiOrthoAlign. BMC-Genomics 15(Suppl. 6), S5 (2014)CrossRefGoogle Scholar
  15. 15.
    Benzaid, B., Dondi, R., El-Mabrouk, N.: Duplication-loss genome alignment: complexity and algorithm. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 116–127. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Holland, J.H.: Adaptation in natural and artificial systems. Ph.D. dissertation, University of Michigan (1975)Google Scholar
  17. 17.
  18. 18.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Guangxi Key Lab of Multi-source Information Mining and SecurityGuangxi Normal UniversityGuilinChina
  2. 2.College of Computer Science and Information TechnologyGuangxi Normal UniversityGuilinChina

Personalised recommendations